This commit is contained in:
JohnJim0816
2021-05-06 17:14:02 +08:00
parent b17c8f4e41
commit 0c0746cbf4
15 changed files with 128 additions and 84 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-04-29 17:01:08
LastEditTime: 2021-05-06 17:04:38
Discription:
Environment:
'''
@@ -15,6 +15,7 @@ parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from envs.gridworld_env import CliffWalkingWapper
@@ -37,6 +38,8 @@ class QlearningConfig:
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # learning rate
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
@@ -48,6 +51,8 @@ def env_agent_config(cfg,seed=1):
return env,agent
def train(cfg,env,agent):
print('Start to train !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average reward
for i_ep in range(cfg.train_eps):
@@ -67,11 +72,14 @@ def train(cfg,env,agent):
else:
ma_rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
print('Complete training')
return rewards,ma_rewards
def eval(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
for i_ep in range(cfg.eval_eps):
@@ -90,6 +98,7 @@ def eval(cfg,env,agent):
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":

View File

@@ -5,12 +5,10 @@ Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:59:22
LastEditor: JiangJi
LastEditTime: 2021-05-06 01:47:36
LastEditTime: 2021-05-06 16:58:01
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)

View File

@@ -1,80 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 17:59:16
LastEditor: John
LastEditTime: 2021-03-12 17:01:43
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd())
import datetime
from envs.racetrack_env import RacetrackEnv
from Sarsa.agent import Sarsa
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
class SarsaConfig:
''' parameters for Sarsa
'''
def __init__(self):
self.epsilon = 0.15 # epsilon: The probability to select a random action .
self.gamma = 0.9 # gamma: Gamma discount factor.
self.lr = 0.2 # learning rate: step size parameter
self.n_episodes = 150
self.n_steps = 2000
def sarsa_train(cfg,env,agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.n_episodes):
# Print out which episode we're on, useful for debugging.
# Generate an episode.
# An episode is an array of (state, action, reward) tuples
state = env.reset()
ep_reward = 0
while True:
# for t in range(cfg.n_steps):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
next_action = agent.choose_action(next_state)
agent.update(state, action, reward, next_state, next_action,done)
state = next_state
if done:
break
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
rewards.append(ep_reward)
# if (i_episode+1)%10==0:
# print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.n_episodes,ep_reward))
return rewards,ma_rewards
if __name__ == "__main__":
sarsa_cfg = SarsaConfig()
env = RacetrackEnv()
action_dim=9
agent = Sarsa(action_dim,sarsa_cfg)
rewards,ma_rewards = sarsa_train(sarsa_cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

117
codes/Sarsa/task0_train.py Normal file
View File

@@ -0,0 +1,117 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 17:59:16
LastEditor: John
LastEditTime: 2021-05-06 17:12:37
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
from envs.racetrack_env import RacetrackEnv
from Sarsa.agent import Sarsa
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class SarsaConfig:
''' parameters for Sarsa
'''
def __init__(self):
self.algo = 'Qlearning'
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
self.train_eps = 200
self.eval_eps = 50
self.epsilon = 0.15 # epsilon: The probability to select a random action .
self.gamma = 0.9 # gamma: Gamma discount factor.
self.lr = 0.2 # learning rate: step size parameter
self.n_steps = 2000
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
action_dim=9
agent = Sarsa(action_dim,cfg)
return env,agent
def train(cfg,env,agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.train_eps):
# Print out which episode we're on, useful for debugging.
# Generate an episode.
# An episode is an array of (state, action, reward) tuples
state = env.reset()
ep_reward = 0
while True:
# for t in range(cfg.n_steps):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
next_action = agent.choose_action(next_state)
agent.update(state, action, reward, next_state, next_action,done)
state = next_state
if done:
break
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
rewards.append(ep_reward)
if (i_episode+1)%10==0:
print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.train_eps,ep_reward))
return rewards,ma_rewards
def eval(cfg,env,agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.eval_eps):
# Print out which episode we're on, useful for debugging.
# Generate an episode.
# An episode is an array of (state, action, reward) tuples
state = env.reset()
ep_reward = 0
while True:
# for t in range(cfg.n_steps):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
state = next_state
if done:
break
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
rewards.append(ep_reward)
if (i_episode+1)%10==0:
print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.eval_eps,ep_reward))
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = SarsaConfig()
env,agent = env_agent_config(cfg,seed=1)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)