hot update A2C

This commit is contained in:
johnjim0816
2022-08-29 15:12:33 +08:00
parent 99a3c1afec
commit 0b0f7e857d
109 changed files with 8213 additions and 1658 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 21:14:12
LastEditor: John
LastEditTime: 2021-09-15 13:21:03
LastEditTime: 2022-08-29 14:24:44
Discription:
Environment:
'''
@@ -31,40 +31,45 @@ class MLP(nn.Module):
x = F.relu(self.fc2(x))
return self.fc3(x)
class ActorSoftmax(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=256):
super(ActorSoftmax, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self,state):
dist = F.relu(self.fc1(state))
dist = F.softmax(self.fc2(dist),dim=1)
return dist
class Critic(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
# 随机初始化为较小的值
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
# 按维数1拼接
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
def __init__(self,input_dim,output_dim,hidden_dim=256):
super(Critic,self).__init__()
assert output_dim == 1 # critic must output a single value
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self,state):
value = F.relu(self.fc1(state))
value = self.fc2(value)
return value
class Actor(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_obs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, n_actions)
class ActorCriticSoftmax(nn.Module):
def __init__(self, input_dim, output_dim, actor_hidden_dim=256,critic_hidden_dim=256):
super(ActorCriticSoftmax, self).__init__()
self.critic_fc1 = nn.Linear(input_dim, critic_hidden_dim)
self.critic_fc2 = nn.Linear(critic_hidden_dim, 1)
self.actor_fc1 = nn.Linear(input_dim, actor_hidden_dim)
self.actor_fc2 = nn.Linear(actor_hidden_dim, output_dim)
def forward(self, state):
# state = Variable(torch.from_numpy(state).float().unsqueeze(0))
value = F.relu(self.critic_fc1(state))
value = self.critic_fc2(value)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
policy_dist = F.relu(self.actor_fc1(state))
policy_dist = F.softmax(self.actor_fc2(policy_dist), dim=1)
return value, policy_dist
class ActorCritic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim=256):