94 lines
3.1 KiB
Python
94 lines
3.1 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-12 21:14:12
|
||
LastEditor: John
|
||
LastEditTime: 2022-08-29 14:24:44
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from torch.distributions import Categorical
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||
""" 初始化q网络,为全连接网络
|
||
input_dim: 输入的特征数即环境的状态维度
|
||
output_dim: 输出的动作维度
|
||
"""
|
||
super(MLP, self).__init__()
|
||
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
|
||
|
||
def forward(self, x):
|
||
# 各层对应的激活函数
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
return self.fc3(x)
|
||
|
||
class ActorSoftmax(nn.Module):
|
||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||
super(ActorSoftmax, self).__init__()
|
||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
||
def forward(self,state):
|
||
dist = F.relu(self.fc1(state))
|
||
dist = F.softmax(self.fc2(dist),dim=1)
|
||
return dist
|
||
class Critic(nn.Module):
|
||
def __init__(self,input_dim,output_dim,hidden_dim=256):
|
||
super(Critic,self).__init__()
|
||
assert output_dim == 1 # critic must output a single value
|
||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
||
def forward(self,state):
|
||
value = F.relu(self.fc1(state))
|
||
value = self.fc2(value)
|
||
return value
|
||
|
||
class ActorCriticSoftmax(nn.Module):
|
||
def __init__(self, input_dim, output_dim, actor_hidden_dim=256,critic_hidden_dim=256):
|
||
super(ActorCriticSoftmax, self).__init__()
|
||
|
||
self.critic_fc1 = nn.Linear(input_dim, critic_hidden_dim)
|
||
self.critic_fc2 = nn.Linear(critic_hidden_dim, 1)
|
||
|
||
self.actor_fc1 = nn.Linear(input_dim, actor_hidden_dim)
|
||
self.actor_fc2 = nn.Linear(actor_hidden_dim, output_dim)
|
||
|
||
def forward(self, state):
|
||
# state = Variable(torch.from_numpy(state).float().unsqueeze(0))
|
||
value = F.relu(self.critic_fc1(state))
|
||
value = self.critic_fc2(value)
|
||
|
||
policy_dist = F.relu(self.actor_fc1(state))
|
||
policy_dist = F.softmax(self.actor_fc2(policy_dist), dim=1)
|
||
|
||
return value, policy_dist
|
||
|
||
class ActorCritic(nn.Module):
|
||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||
super(ActorCritic, self).__init__()
|
||
self.critic = nn.Sequential(
|
||
nn.Linear(n_states, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, 1)
|
||
)
|
||
|
||
self.actor = nn.Sequential(
|
||
nn.Linear(n_states, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, n_actions),
|
||
nn.Softmax(dim=1),
|
||
)
|
||
|
||
def forward(self, x):
|
||
value = self.critic(x)
|
||
probs = self.actor(x)
|
||
dist = Categorical(probs)
|
||
return dist, value |