hot update A2C
This commit is contained in:
@@ -1,5 +0,0 @@
|
||||
## A2C
|
||||
|
||||
|
||||
|
||||
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
|
||||
@@ -1,56 +1,60 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-05-03 22:16:08
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-07-20 23:54:40
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
''' A2C网络模型,包含一个Actor和Critic
|
||||
'''
|
||||
def __init__(self, input_dim, output_dim, hidden_dim):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
probs = self.actor(x)
|
||||
dist = Categorical(probs)
|
||||
return dist, value
|
||||
class A2C:
|
||||
''' A2C算法
|
||||
'''
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters())
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.memory = memories['ACMemory']
|
||||
self.actor = models['Actor'].to(self.device)
|
||||
self.critic = models['Critic'].to(self.device)
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def predict_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value = self.critic(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
for t in reversed(range(len(reward_pool))):
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
tot_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
self.actor_optim.zero_grad()
|
||||
self.critic_optim.zero_grad()
|
||||
tot_loss.backward()
|
||||
self.actor_optim.step()
|
||||
self.critic_optim.step()
|
||||
self.memory.clear()
|
||||
def save_model(self, path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.actor.state_dict(), f"{path}/actor_checkpoint.pt")
|
||||
torch.save(self.critic.state_dict(), f"{path}/critic_checkpoint.pt")
|
||||
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + self.gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
def load_model(self, path):
|
||||
self.actor.load_state_dict(torch.load(f"{path}/actor_checkpoint.pt"))
|
||||
self.critic.load_state_dict(torch.load(f"{path}/critic_checkpoint.pt"))
|
||||
55
projects/codes/A2C/a2c_2.py
Normal file
55
projects/codes/A2C/a2c_2.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class A2C_2:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.memory = memories['ACMemory']
|
||||
self.ac_net = models['ActorCritic'].to(self.device)
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr=cfg['lr'])
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def predict_action(self,state):
|
||||
''' predict can be all wrapped with no_grad(), then donot need detach(), or you can just copy contents of 'sample_action'
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state)
|
||||
value = value.numpy().squeeze(0)[0] # shape(value) = (1,)
|
||||
action = np.random.choice(self.n_actions, p=dist.numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value,_ = self.ac_net(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
for t in reversed(range(len(reward_pool))):
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
ac_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
self.ac_optimizer.zero_grad()
|
||||
ac_loss.backward()
|
||||
self.ac_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save_model(self, path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.ac_net.state_dict(), f"{path}/a2c_checkpoint.pt")
|
||||
|
||||
def load_model(self, path):
|
||||
self.ac_net.load_state_dict(torch.load(f"{path}/a2c_checkpoint.pt"))
|
||||
|
||||
|
||||
121
projects/codes/A2C/main.py
Normal file
121
projects/codes/A2C/main.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import datetime
|
||||
import argparse
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=1600,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--actor_lr',default=3e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int,help="hidden of actor net")
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int,help="hidden of critic net")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'Actor':ActorSoftmax(cfg['n_states'],cfg['n_actions'], hidden_dim = cfg['actor_hidden_dim']),'Critic':Critic(cfg['n_states'],1,hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action, value, dist = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
log_prob = torch.log(dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
||||
agent.memory.push((value,log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += entropy
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action,_,_ = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
120
projects/codes/A2C/main2.py
Normal file
120
projects/codes/A2C/main2.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import datetime
|
||||
import argparse
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorCriticSoftmax
|
||||
from envs.register import register_env
|
||||
from a2c_2 import A2C_2
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=2000,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=3e-4,type=float,help="learning rate")
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'ActorCritic':ActorCriticSoftmax(cfg['n_states'],cfg['n_actions'], actor_hidden_dim = cfg['actor_hidden_dim'],critic_hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C_2(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action, value, dist = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
log_prob = torch.log(dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
||||
agent.memory.push((value,log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += entropy
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action,_,_ = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,14 +0,0 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"n_envs": 8,
|
||||
"max_steps": 20000,
|
||||
"n_steps": 5,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.001,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 64 KiB |
Binary file not shown.
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 2000,
|
||||
"test_eps": 20,
|
||||
"ep_max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.0003,
|
||||
"actor_hidden_dim": 256,
|
||||
"critic_hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/models/",
|
||||
"n_states": 4,
|
||||
"n_actions": 2
|
||||
}
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 44 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,93.0,93
|
||||
3,155.0,155
|
||||
4,116.0,116
|
||||
5,200.0,200
|
||||
6,190.0,190
|
||||
7,176.0,176
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,179.0,179
|
||||
12,200.0,200
|
||||
13,185.0,185
|
||||
14,191.0,191
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,124.0,124
|
||||
18,200.0,200
|
||||
19,172.0,172
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 63 KiB |
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
@@ -0,0 +1 @@
|
||||
{"algo_name": "A2C", "env_name": "CartPole-v0", "train_eps": 1600, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.99, "actor_lr": 0.0003, "critic_lr": 0.001, "actor_hidden_dim": 256, "critic_hidden_dim": 256, "device": "cpu", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/results/", "model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/models/", "n_states": 4, "n_actions": 2}
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 41 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,177.0,177
|
||||
1,180.0,180
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,167.0,167
|
||||
5,124.0,124
|
||||
6,128.0,128
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,186.0,186
|
||||
11,187.0,187
|
||||
12,200.0,200
|
||||
13,176.0,176
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,185.0,185
|
||||
19,180.0,180
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 66 KiB |
File diff suppressed because it is too large
Load Diff
@@ -1,137 +0,0 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import datetime
|
||||
import argparse
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
from a2c import ActorCritic
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards, save_args
|
||||
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--n_envs',default=8,type=int,help="numbers of environments")
|
||||
|
||||
parser.add_argument('--max_steps',default=20000,type=int,help="episodes of training")
|
||||
parser.add_argument('--n_steps',default=5,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=1e-3,type=float,help="learning rate")
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def make_envs(env_name):
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
env.seed(2)
|
||||
return env
|
||||
return _thunk
|
||||
def test_env(env,model,vis=False):
|
||||
state = env.reset()
|
||||
if vis: env.render()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(cfg.device)
|
||||
dist, _ = model(state)
|
||||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||||
state = next_state
|
||||
if vis: env.render()
|
||||
total_reward += reward
|
||||
return total_reward
|
||||
|
||||
def compute_returns(next_value, rewards, masks, gamma=0.99):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
|
||||
|
||||
def train(cfg,envs):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
env = gym.make(cfg.env_name) # a single env
|
||||
env.seed(10)
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
step_idx = 0
|
||||
test_rewards = []
|
||||
test_ma_rewards = []
|
||||
state = envs.reset()
|
||||
while step_idx < cfg.max_steps:
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
# rollout trajectory
|
||||
for _ in range(cfg.n_steps):
|
||||
state = torch.FloatTensor(state).to(cfg.device)
|
||||
dist, value = model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
|
||||
state = next_state
|
||||
step_idx += 1
|
||||
if step_idx % 100 == 0:
|
||||
test_reward = np.mean([test_env(env,model) for _ in range(10)])
|
||||
print(f"step_idx:{step_idx}, test_reward:{test_reward}")
|
||||
test_rewards.append(test_reward)
|
||||
if test_ma_rewards:
|
||||
test_ma_rewards.append(0.9*test_ma_rewards[-1]+0.1*test_reward)
|
||||
else:
|
||||
test_ma_rewards.append(test_reward)
|
||||
# plot(step_idx, test_rewards)
|
||||
next_state = torch.FloatTensor(next_state).to(cfg.device)
|
||||
_, next_value = model(next_state)
|
||||
returns = compute_returns(next_value, rewards, masks)
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
advantage = returns - values
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print('Finish training!')
|
||||
return {'rewards':test_rewards,'ma_rewards':test_ma_rewards}
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
# training
|
||||
res_dic = train(cfg,envs)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_args(cfg)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||||
Reference in New Issue
Block a user