122 lines
6.2 KiB
Python
122 lines
6.2 KiB
Python
import sys,os
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
|
parent_path = os.path.dirname(curr_path) # parent path
|
|
sys.path.append(parent_path) # add path to system path
|
|
|
|
import datetime
|
|
import argparse
|
|
import gym
|
|
import torch
|
|
import numpy as np
|
|
from common.utils import all_seed
|
|
from common.launcher import Launcher
|
|
from common.memories import PGReplay
|
|
from common.models import ActorSoftmax,Critic
|
|
from envs.register import register_env
|
|
from a2c import A2C
|
|
|
|
class Main(Launcher):
|
|
def get_args(self):
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
|
parser = argparse.ArgumentParser(description="hyperparameters")
|
|
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
|
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
|
parser.add_argument('--train_eps',default=1600,type=int,help="episodes of training")
|
|
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
|
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
|
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
|
parser.add_argument('--actor_lr',default=3e-4,type=float,help="learning rate of actor")
|
|
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
|
parser.add_argument('--actor_hidden_dim',default=256,type=int,help="hidden of actor net")
|
|
parser.add_argument('--critic_hidden_dim',default=256,type=int,help="hidden of critic net")
|
|
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
|
parser.add_argument('--seed',default=10,type=int,help="seed")
|
|
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
|
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
|
args = parser.parse_args()
|
|
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
|
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
|
}
|
|
args = {**vars(args),**default_args} # type(dict)
|
|
return args
|
|
def env_agent_config(self,cfg):
|
|
''' create env and agent
|
|
'''
|
|
register_env(cfg['env_name'])
|
|
env = gym.make(cfg['env_name'])
|
|
if cfg['seed'] !=0: # set random seed
|
|
all_seed(env,seed=cfg["seed"])
|
|
try: # state dimension
|
|
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
|
except AttributeError:
|
|
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
|
n_actions = env.action_space.n # action dimension
|
|
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
|
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
|
models = {'Actor':ActorSoftmax(cfg['n_states'],cfg['n_actions'], hidden_dim = cfg['actor_hidden_dim']),'Critic':Critic(cfg['n_states'],1,hidden_dim=cfg['critic_hidden_dim'])}
|
|
memories = {'ACMemory':PGReplay()}
|
|
agent = A2C(models,memories,cfg)
|
|
return env,agent
|
|
def train(self,cfg,env,agent):
|
|
print("Start training!")
|
|
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
|
rewards = [] # record rewards for all episodes
|
|
steps = [] # record steps for all episodes
|
|
|
|
for i_ep in range(cfg['train_eps']):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0 # step per episode
|
|
ep_entropy = 0
|
|
state = env.reset() # reset and obtain initial state
|
|
|
|
for _ in range(cfg['ep_max_steps']):
|
|
action, value, dist = agent.sample_action(state) # sample action
|
|
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
|
log_prob = torch.log(dist.squeeze(0)[action])
|
|
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
|
agent.memory.push((value,log_prob,reward)) # save transitions
|
|
state = next_state # update state
|
|
ep_reward += reward
|
|
ep_entropy += entropy
|
|
ep_step += 1
|
|
if done:
|
|
break
|
|
agent.update(next_state,ep_entropy) # update agent
|
|
rewards.append(ep_reward)
|
|
steps.append(ep_step)
|
|
if (i_ep+1)%10==0:
|
|
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
|
print("Finish training!")
|
|
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
|
def test(self,cfg,env,agent):
|
|
print("Start testing!")
|
|
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
|
rewards = [] # record rewards for all episodes
|
|
steps = [] # record steps for all episodes
|
|
for i_ep in range(cfg['test_eps']):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0
|
|
state = env.reset() # reset and obtain initial state
|
|
for _ in range(cfg['ep_max_steps']):
|
|
action,_,_ = agent.predict_action(state) # predict action
|
|
next_state, reward, done, _ = env.step(action)
|
|
state = next_state
|
|
ep_reward += reward
|
|
ep_step += 1
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
steps.append(ep_step)
|
|
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
|
print("Finish testing!")
|
|
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
|
|
|
if __name__ == "__main__":
|
|
main = Main()
|
|
main.run()
|
|
|
|
|
|
|
|
|