244 lines
9.0 KiB
Python
244 lines
9.0 KiB
Python
# TradingAgents/graph/trading_graph.py
|
|
|
|
import os
|
|
from pathlib import Path
|
|
import json
|
|
from datetime import date
|
|
from typing import Dict, Any, Tuple, List, Optional
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from langgraph.prebuilt import ToolNode
|
|
|
|
from tradingagents.agents import *
|
|
from tradingagents.default_config import DEFAULT_CONFIG
|
|
from tradingagents.agents.utils.memory import FinancialSituationMemory
|
|
from tradingagents.agents.utils.agent_states import (
|
|
AgentState,
|
|
InvestDebateState,
|
|
RiskDebateState,
|
|
)
|
|
from tradingagents.dataflows.interface import set_config
|
|
|
|
from .conditional_logic import ConditionalLogic
|
|
from .setup import GraphSetup
|
|
from .propagation import Propagator
|
|
from .reflection import Reflector
|
|
from .signal_processing import SignalProcessor
|
|
|
|
|
|
class TradingAgentsGraph:
|
|
"""Main class that orchestrates the trading agents framework."""
|
|
|
|
def __init__(
|
|
self,
|
|
selected_analysts=["market", "social", "news", "fundamentals"],
|
|
debug=False,
|
|
config: Dict[str, Any] = None,
|
|
):
|
|
"""Initialize the trading agents graph and components.
|
|
|
|
Args:
|
|
selected_analysts: List of analyst types to include
|
|
debug: Whether to run in debug mode
|
|
config: Configuration dictionary. If None, uses default config
|
|
"""
|
|
self.debug = debug
|
|
self.config = config or DEFAULT_CONFIG
|
|
|
|
# Update the interface's config
|
|
set_config(self.config)
|
|
|
|
# Create necessary directories
|
|
os.makedirs(
|
|
os.path.join(self.config["project_dir"], "dataflows/data_cache"),
|
|
exist_ok=True,
|
|
)
|
|
|
|
# Initialize LLMs
|
|
self.deep_thinking_llm = ChatOpenAI(model=self.config["deep_think_llm"])
|
|
self.quick_thinking_llm = ChatOpenAI(
|
|
model=self.config["quick_think_llm"], temperature=0.1
|
|
)
|
|
self.toolkit = Toolkit(config=self.config)
|
|
|
|
# Initialize memories
|
|
self.bull_memory = FinancialSituationMemory("bull_memory")
|
|
self.bear_memory = FinancialSituationMemory("bear_memory")
|
|
self.trader_memory = FinancialSituationMemory("trader_memory")
|
|
self.invest_judge_memory = FinancialSituationMemory("invest_judge_memory")
|
|
self.risk_manager_memory = FinancialSituationMemory("risk_manager_memory")
|
|
|
|
# Create tool nodes
|
|
self.tool_nodes = self._create_tool_nodes()
|
|
|
|
# Initialize components
|
|
self.conditional_logic = ConditionalLogic()
|
|
self.graph_setup = GraphSetup(
|
|
self.quick_thinking_llm,
|
|
self.deep_thinking_llm,
|
|
self.toolkit,
|
|
self.tool_nodes,
|
|
self.bull_memory,
|
|
self.bear_memory,
|
|
self.trader_memory,
|
|
self.invest_judge_memory,
|
|
self.risk_manager_memory,
|
|
self.conditional_logic,
|
|
)
|
|
|
|
self.propagator = Propagator()
|
|
self.reflector = Reflector(self.quick_thinking_llm)
|
|
self.signal_processor = SignalProcessor(self.quick_thinking_llm)
|
|
|
|
# State tracking
|
|
self.curr_state = None
|
|
self.ticker = None
|
|
self.log_states_dict = {} # date to full state dict
|
|
|
|
# Set up the graph
|
|
self.graph = self.graph_setup.setup_graph(selected_analysts)
|
|
|
|
def _create_tool_nodes(self) -> Dict[str, ToolNode]:
|
|
"""Create tool nodes for different data sources."""
|
|
return {
|
|
"market": ToolNode(
|
|
[
|
|
# online tools
|
|
self.toolkit.get_YFin_data_online,
|
|
self.toolkit.get_stockstats_indicators_report_online,
|
|
# offline tools
|
|
self.toolkit.get_YFin_data,
|
|
self.toolkit.get_stockstats_indicators_report,
|
|
]
|
|
),
|
|
"social": ToolNode(
|
|
[
|
|
# online tools
|
|
self.toolkit.get_stock_news_openai,
|
|
# offline tools
|
|
self.toolkit.get_reddit_stock_info,
|
|
]
|
|
),
|
|
"news": ToolNode(
|
|
[
|
|
# online tools
|
|
self.toolkit.get_global_news_openai,
|
|
self.toolkit.get_google_news,
|
|
# offline tools
|
|
self.toolkit.get_finnhub_news,
|
|
self.toolkit.get_reddit_news,
|
|
]
|
|
),
|
|
"fundamentals": ToolNode(
|
|
[
|
|
# online tools
|
|
self.toolkit.get_fundamentals_openai,
|
|
# offline tools
|
|
self.toolkit.get_finnhub_company_insider_sentiment,
|
|
self.toolkit.get_finnhub_company_insider_transactions,
|
|
self.toolkit.get_simfin_balance_sheet,
|
|
self.toolkit.get_simfin_cashflow,
|
|
self.toolkit.get_simfin_income_stmt,
|
|
]
|
|
),
|
|
}
|
|
|
|
def propagate(self, company_name, trade_date):
|
|
"""Run the trading agents graph for a company on a specific date."""
|
|
|
|
self.ticker = company_name
|
|
|
|
# Initialize state
|
|
init_agent_state = self.propagator.create_initial_state(
|
|
company_name, trade_date
|
|
)
|
|
args = self.propagator.get_graph_args()
|
|
|
|
if self.debug:
|
|
# Debug mode with tracing
|
|
trace = []
|
|
for chunk in self.graph.stream(init_agent_state, **args):
|
|
if len(chunk["messages"]) == 0:
|
|
pass
|
|
else:
|
|
chunk["messages"][-1].pretty_print()
|
|
trace.append(chunk)
|
|
|
|
final_state = trace[-1]
|
|
else:
|
|
# Standard mode without tracing
|
|
final_state = self.graph.invoke(init_agent_state, **args)
|
|
|
|
# Store current state for reflection
|
|
self.curr_state = final_state
|
|
|
|
# Log state
|
|
self._log_state(trade_date, final_state)
|
|
|
|
# Return decision and processed signal
|
|
return final_state, self.process_signal(final_state["final_trade_decision"])
|
|
|
|
def _log_state(self, trade_date, final_state):
|
|
"""Log the final state to a JSON file."""
|
|
self.log_states_dict[str(trade_date)] = {
|
|
"company_of_interest": final_state["company_of_interest"],
|
|
"trade_date": final_state["trade_date"],
|
|
"market_report": final_state["market_report"],
|
|
"sentiment_report": final_state["sentiment_report"],
|
|
"news_report": final_state["news_report"],
|
|
"fundamentals_report": final_state["fundamentals_report"],
|
|
"investment_debate_state": {
|
|
"bull_history": final_state["investment_debate_state"]["bull_history"],
|
|
"bear_history": final_state["investment_debate_state"]["bear_history"],
|
|
"history": final_state["investment_debate_state"]["history"],
|
|
"current_response": final_state["investment_debate_state"][
|
|
"current_response"
|
|
],
|
|
"judge_decision": final_state["investment_debate_state"][
|
|
"judge_decision"
|
|
],
|
|
},
|
|
"trader_investment_decision": final_state["trader_investment_plan"],
|
|
"risk_debate_state": {
|
|
"risky_history": final_state["risk_debate_state"]["risky_history"],
|
|
"safe_history": final_state["risk_debate_state"]["safe_history"],
|
|
"neutral_history": final_state["risk_debate_state"]["neutral_history"],
|
|
"history": final_state["risk_debate_state"]["history"],
|
|
"judge_decision": final_state["risk_debate_state"]["judge_decision"],
|
|
},
|
|
"investment_plan": final_state["investment_plan"],
|
|
"final_trade_decision": final_state["final_trade_decision"],
|
|
}
|
|
|
|
# Save to file
|
|
directory = Path(f"eval_results/{self.ticker}/TradingAgentsStrategy_logs/")
|
|
directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
with open(
|
|
f"eval_results/{self.ticker}/TradingAgentsStrategy_logs/full_states_log.json",
|
|
"w",
|
|
) as f:
|
|
json.dump(self.log_states_dict, f, indent=4)
|
|
|
|
def reflect_and_remember(self, returns_losses):
|
|
"""Reflect on decisions and update memory based on returns."""
|
|
self.reflector.reflect_bull_researcher(
|
|
self.curr_state, returns_losses, self.bull_memory
|
|
)
|
|
self.reflector.reflect_bear_researcher(
|
|
self.curr_state, returns_losses, self.bear_memory
|
|
)
|
|
self.reflector.reflect_trader(
|
|
self.curr_state, returns_losses, self.trader_memory
|
|
)
|
|
self.reflector.reflect_invest_judge(
|
|
self.curr_state, returns_losses, self.invest_judge_memory
|
|
)
|
|
self.reflector.reflect_risk_manager(
|
|
self.curr_state, returns_losses, self.risk_manager_memory
|
|
)
|
|
|
|
def process_signal(self, full_signal):
|
|
"""Process a signal to extract the core decision."""
|
|
return self.signal_processor.process_signal(full_signal)
|