Files
TradingAgents/tradingagents/agents/utils/memory.py
2025-06-26 00:00:39 -04:00

114 lines
4.1 KiB
Python

import chromadb
from chromadb.config import Settings
from openai import OpenAI
class FinancialSituationMemory:
def __init__(self, name, config):
if config["backend_url"] == "http://localhost:11434/v1":
self.embedding = "nomic-embed-text"
else:
self.embedding = "text-embedding-3-small"
self.client = OpenAI()
self.chroma_client = chromadb.Client(Settings(allow_reset=True))
self.situation_collection = self.chroma_client.create_collection(name=name)
def get_embedding(self, text):
"""Get OpenAI embedding for a text"""
response = self.client.embeddings.create(
model=self.embedding, input=text
)
return response.data[0].embedding
def add_situations(self, situations_and_advice):
"""Add financial situations and their corresponding advice. Parameter is a list of tuples (situation, rec)"""
situations = []
advice = []
ids = []
embeddings = []
offset = self.situation_collection.count()
for i, (situation, recommendation) in enumerate(situations_and_advice):
situations.append(situation)
advice.append(recommendation)
ids.append(str(offset + i))
embeddings.append(self.get_embedding(situation))
self.situation_collection.add(
documents=situations,
metadatas=[{"recommendation": rec} for rec in advice],
embeddings=embeddings,
ids=ids,
)
def get_memories(self, current_situation, n_matches=1):
"""Find matching recommendations using OpenAI embeddings"""
query_embedding = self.get_embedding(current_situation)
results = self.situation_collection.query(
query_embeddings=[query_embedding],
n_results=n_matches,
include=["metadatas", "documents", "distances"],
)
matched_results = []
for i in range(len(results["documents"][0])):
matched_results.append(
{
"matched_situation": results["documents"][0][i],
"recommendation": results["metadatas"][0][i]["recommendation"],
"similarity_score": 1 - results["distances"][0][i],
}
)
return matched_results
if __name__ == "__main__":
# Example usage
matcher = FinancialSituationMemory()
# Example data
example_data = [
(
"High inflation rate with rising interest rates and declining consumer spending",
"Consider defensive sectors like consumer staples and utilities. Review fixed-income portfolio duration.",
),
(
"Tech sector showing high volatility with increasing institutional selling pressure",
"Reduce exposure to high-growth tech stocks. Look for value opportunities in established tech companies with strong cash flows.",
),
(
"Strong dollar affecting emerging markets with increasing forex volatility",
"Hedge currency exposure in international positions. Consider reducing allocation to emerging market debt.",
),
(
"Market showing signs of sector rotation with rising yields",
"Rebalance portfolio to maintain target allocations. Consider increasing exposure to sectors benefiting from higher rates.",
),
]
# Add the example situations and recommendations
matcher.add_situations(example_data)
# Example query
current_situation = """
Market showing increased volatility in tech sector, with institutional investors
reducing positions and rising interest rates affecting growth stock valuations
"""
try:
recommendations = matcher.get_memories(current_situation, n_matches=2)
for i, rec in enumerate(recommendations, 1):
print(f"\nMatch {i}:")
print(f"Similarity Score: {rec['similarity_score']:.2f}")
print(f"Matched Situation: {rec['matched_situation']}")
print(f"Recommendation: {rec['recommendation']}")
except Exception as e:
print(f"Error during recommendation: {str(e)}")