refactor: 简化Embeddings和LLM类实现,移除不必要依赖 docs: 更新文档内容,添加硅基流动API使用说明 chore: 更新requirements.txt依赖版本
19 lines
805 B
Python
19 lines
805 B
Python
from VectorBase import VectorStore
|
||
from utils import ReadFiles
|
||
from LLM import OpenAIChat
|
||
from Embeddings import OpenAIEmbedding
|
||
|
||
# 没有保存数据库
|
||
docs = ReadFiles('./data').get_content(max_token_len=600, cover_content=150) # 获得data目录下的所有文件内容并分割
|
||
vector = VectorStore(docs)
|
||
embedding = OpenAIEmbedding() # 创建EmbeddingModel
|
||
vector.get_vector(EmbeddingModel=embedding)
|
||
vector.persist(path='storage') # 将向量和文档内容保存到storage目录下,下次再用就可以直接加载本地的数据库
|
||
|
||
# vector.load_vector('./storage') # 加载本地的数据库
|
||
|
||
question = 'RAG的原理是什么?'
|
||
|
||
content = vector.query(question, EmbeddingModel=embedding, k=1)[0]
|
||
chat = OpenAIChat(model='Qwen/Qwen2.5-32B-Instruct')
|
||
print(chat.chat(question, [], content)) |