200 lines
7.2 KiB
Python
200 lines
7.2 KiB
Python
import os
|
||
import platform
|
||
import argparse
|
||
import time
|
||
import warnings
|
||
import math
|
||
import pandas as pd
|
||
import torch
|
||
from torch import optim
|
||
from torch.utils.data import DataLoader
|
||
from contextlib import nullcontext
|
||
|
||
from transformers import AutoTokenizer
|
||
|
||
from k_model import ModelConfig, Transformer
|
||
from dataset import SFTDataset
|
||
|
||
import swanlab
|
||
|
||
warnings.filterwarnings('ignore')
|
||
|
||
|
||
def Logger(content):
|
||
print(content)
|
||
|
||
def get_lr(it, all):
|
||
warmup_iters = args.warmup_iters
|
||
lr_decay_iters = all
|
||
min_lr = args.learning_rate / 10
|
||
|
||
if it < warmup_iters:
|
||
return args.learning_rate * it / warmup_iters
|
||
|
||
if it > lr_decay_iters:
|
||
return min_lr
|
||
|
||
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||
assert 0 <= decay_ratio <= 1
|
||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||
return min_lr + coeff * (args.learning_rate - min_lr)
|
||
|
||
def train_epoch(epoch):
|
||
start_time = time.time()
|
||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||
X = X.to(args.device)
|
||
Y = Y.to(args.device)
|
||
loss_mask = loss_mask.to(args.device)
|
||
|
||
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
|
||
for param_group in optimizer.param_groups:
|
||
param_group['lr'] = lr
|
||
|
||
with ctx:
|
||
out = model(X, Y)
|
||
loss = out.last_loss / args.accumulation_steps
|
||
loss_mask = loss_mask.view(-1)
|
||
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
||
|
||
scaler.scale(loss).backward()
|
||
|
||
if (step + 1) % args.accumulation_steps == 0:
|
||
scaler.unscale_(optimizer)
|
||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||
|
||
scaler.step(optimizer)
|
||
scaler.update()
|
||
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
if step % args.log_interval == 0:
|
||
spend_time = time.time() - start_time
|
||
Logger(
|
||
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
||
epoch + 1,
|
||
args.epochs,
|
||
step,
|
||
iter_per_epoch,
|
||
loss.item() * args.accumulation_steps,
|
||
optimizer.param_groups[-1]['lr'],
|
||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||
if args.use_swanlab:
|
||
swanlab.log({
|
||
"loss": loss.item() * args.accumulation_steps,
|
||
"lr": optimizer.param_groups[-1]['lr']
|
||
})
|
||
|
||
if (step + 1) % args.save_interval == 0:
|
||
model.eval()
|
||
ckp = f'{args.save_dir}/sft_dim{lm_config.dim}_layers{lm_config.n_layers}_vocab_size{lm_config.vocab_size}.pth'
|
||
|
||
# 处理多卡保存
|
||
state_dict = model.module.state_dict() if isinstance(model, torch.nn.DataParallel) else model.state_dict()
|
||
torch.save(state_dict, ckp)
|
||
model.train()
|
||
|
||
if (step + 1) % 20000 == 0:
|
||
model.eval()
|
||
ckp = f'{args.save_dir}/sft_dim{lm_config.dim}_layers{lm_config.n_layers}_vocab_size{lm_config.vocab_size}_step{step+1}.pth'
|
||
|
||
state_dict = model.module.state_dict() if isinstance(model, torch.nn.DataParallel) else model.state_dict()
|
||
torch.save(state_dict, ckp)
|
||
model.train()
|
||
|
||
|
||
def init_model():
|
||
def count_parameters(model):
|
||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained('./tokenizer_k/')
|
||
|
||
model = Transformer(lm_config)
|
||
|
||
ckp = './base_monkey_215M/pretrain_1024_18_6144.pth'
|
||
state_dict = torch.load(ckp, map_location=args.device)
|
||
unwanted_prefix = '_orig_mod.'
|
||
for k, v in list(state_dict.items()):
|
||
if k.startswith(unwanted_prefix):
|
||
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
||
model.load_state_dict(state_dict, strict=False)
|
||
|
||
# 多卡初始化
|
||
num_gpus = torch.cuda.device_count()
|
||
if num_gpus > 1:
|
||
Logger(f"Using {num_gpus} GPUs with DataParallel!")
|
||
model = torch.nn.DataParallel(model)
|
||
|
||
model = model.to(args.device)
|
||
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
||
return model, tokenizer
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="Tiny-LLM Pretraining")
|
||
parser.add_argument("--out_dir", type=str, default="BeelGroup_sft_model_215M", help="Output directory")
|
||
parser.add_argument("--epochs", type=int, default=1, help="Number of epochs")
|
||
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
|
||
parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")
|
||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
||
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
|
||
parser.add_argument("--use_swanlab", type=bool, default=True, help="Use Weights & Biases")
|
||
parser.add_argument("--num_workers", type=int, default=4, help="Number of workers for data loading")
|
||
parser.add_argument("--data_path", type=str, default="", help="Path to training data")
|
||
parser.add_argument("--accumulation_steps", type=int, default=4, help="Gradient accumulation steps")
|
||
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
|
||
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
|
||
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
|
||
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
|
||
# 添加多卡参数
|
||
parser.add_argument("--gpus", type=str, default='0,1', help="Comma-separated GPU IDs (e.g. '0,1,2')")
|
||
|
||
args = parser.parse_args()
|
||
|
||
# 设置可见GPU
|
||
if args.gpus is not None:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
|
||
# 自动设置主设备为第一个GPU
|
||
if torch.cuda.is_available():
|
||
args.device = "cuda:0"
|
||
else:
|
||
args.device = "cpu"
|
||
|
||
if args.use_swanlab:
|
||
swanlab.login(api_key='your key')
|
||
run = swanlab.init(
|
||
project="Tiny-LLM",
|
||
experiment_name="BelleGropu-sft-215M",
|
||
config=args,
|
||
)
|
||
|
||
lm_config = ModelConfig(
|
||
dim=1024,
|
||
n_layers=18,
|
||
)
|
||
max_seq_len = lm_config.max_seq_len
|
||
args.save_dir = os.path.join(args.out_dir)
|
||
os.makedirs(args.save_dir, exist_ok=True)
|
||
os.makedirs(args.out_dir, exist_ok=True)
|
||
torch.manual_seed(42)
|
||
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||
|
||
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||
|
||
model, tokenizer = init_model()
|
||
|
||
train_ds = SFTDataset(args.data_path, tokenizer, max_length=max_seq_len)
|
||
train_loader = DataLoader(
|
||
train_ds,
|
||
batch_size=args.batch_size,
|
||
pin_memory=True,
|
||
drop_last=False,
|
||
shuffle=True,
|
||
num_workers=args.num_workers
|
||
)
|
||
|
||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
|
||
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
|
||
|
||
iter_per_epoch = len(train_loader)
|
||
for epoch in range(args.epochs):
|
||
train_epoch(epoch) |