from VectorBase import VectorStore from utils import ReadFiles from LLM import OpenAIChat from Embeddings import OpenAIEmbedding # 没有保存数据库 docs = ReadFiles('./data').get_content(max_token_len=600, cover_content=150) # 获得data目录下的所有文件内容并分割 vector = VectorStore(docs) embedding = OpenAIEmbedding() # 创建EmbeddingModel vector.get_vector(EmbeddingModel=embedding) vector.persist(path='storage') # 将向量和文档内容保存到storage目录下,下次再用就可以直接加载本地的数据库 # vector.load_vector('./storage') # 加载本地的数据库 question = 'RAG的原理是什么?' content = vector.query(question, EmbeddingModel=embedding, k=1)[0] chat = OpenAIChat(model='Qwen/Qwen2.5-32B-Instruct') print(chat.chat(question, [], content))