update ch05
This commit is contained in:
66
docs/chapter5/code/web_demo.py
Normal file
66
docs/chapter5/code/web_demo.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import json
|
||||
import random
|
||||
import numpy as np
|
||||
import streamlit as st
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
# from transformers.generation.utils import GenerationConfig
|
||||
|
||||
st.set_page_config(page_title="K-Model-215M LLM")
|
||||
st.title("K-Model-215M LLM")
|
||||
st.caption("🚀 A streamlit chatbot powered by Self-LLM")
|
||||
|
||||
|
||||
with st.sidebar:
|
||||
st.markdown("## K-Model-215M LLM")
|
||||
"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
|
||||
# 创建一个滑块,用于选择最大长度,范围在 0 到 8192 之间,默认值为 512(Qwen2.5 支持 128K 上下文,并能生成最多 8K tokens)
|
||||
st.sidebar.title("设定调整")
|
||||
st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 128, 512, 512, step=1)
|
||||
st.session_state.temperature = st.sidebar.slider("temperature", 0.1, 1.2, 0.75, step=0.01)
|
||||
|
||||
|
||||
model_id = "./k-model-215M/"
|
||||
|
||||
# 定义一个函数,用于获取模型和 tokenizer
|
||||
@st.cache_resource
|
||||
def get_model():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto").eval()
|
||||
return tokenizer, model
|
||||
|
||||
|
||||
tokenizer, model = get_model()
|
||||
|
||||
# 如果 session_state 中没有 "messages",则创建一个包含默认消息的列表
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]
|
||||
|
||||
# 遍历 session_state 中的所有消息,并显示在聊天界面上
|
||||
for msg in st.session_state.messages:
|
||||
st.chat_message(msg["role"]).write(msg["content"])
|
||||
|
||||
# 如果用户在聊天输入框中输入了内容,则执行以下操作
|
||||
if prompt := st.chat_input():
|
||||
|
||||
# 在聊天界面上显示用户的输入
|
||||
st.chat_message("user").write(prompt)
|
||||
|
||||
# 将用户输入添加到 session_state 中的 messages 列表中
|
||||
st.session_state.messages.append({"role": "user", "content": prompt})
|
||||
|
||||
# 将对话输入模型,获得返回
|
||||
input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)
|
||||
input_ids = tokenizer(input_ids).data['input_ids']
|
||||
x = (torch.tensor(input_ids, dtype=torch.long)[None, ...])
|
||||
|
||||
with torch.no_grad():
|
||||
y = model.generate(x, tokenizer.eos_token_id, st.max_new_tokens, temperature=st.temperature)
|
||||
response = tokenizer.decode(y[0].tolist())
|
||||
|
||||
# 将模型的输出添加到 session_state 中的 messages 列表中
|
||||
st.session_state.messages.append({"role": "assistant", "content": response})
|
||||
# 在聊天界面上显示模型的输出
|
||||
st.chat_message("assistant").write(response)
|
||||
# print(st.session_state) # 打印 session_state 调试
|
||||
|
||||
Reference in New Issue
Block a user