update ch05

This commit is contained in:
KMnO4-zx
2025-02-26 20:31:51 +08:00
parent ca3e727e1c
commit 3512f55993
9 changed files with 699 additions and 405 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -8,39 +8,8 @@ from torch.utils.data import Dataset, DataLoader
import torch
from sklearn.model_selection import train_test_split
import os
class PretrainDataset(Dataset):
def __init__(self, df, tokenizer, max_length=512):
super().__init__()
self.df = df
self.tokenizer = tokenizer
self.max_length = max_length
self.padding = 0
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
#
sample = self.df.iloc[index]
text = f"{self.tokenizer.bos_token}{str(sample['text'])}{self.tokenizer.eos_token}"
input_id = self.tokenizer(text).data['input_ids'][:self.max_length]
text_len = len(input_id)
# 没满最大长度的剩余部分
padding_len = self.max_length - text_len
input_id = input_id + [self.padding] * padding_len
# 0表示不计算损失
loss_mask = [1] * text_len + [0] * padding_len
input_id = np.array(input_id)
X = np.array(input_id[:-1]).astype(np.int64)
Y = np.array(input_id[1:]).astype(np.int64)
loss_mask = np.array(loss_mask[1:]).astype(np.int64)
return torch.from_numpy(X), torch.from_numpy(Y), torch.from_numpy(loss_mask)
class SkyWorkPretrainDataset(Dataset):
class PretrainDataset(Dataset):
def __init__(self, data_path, tokenizer, max_length=512):
super().__init__()
self.data_path = data_path

View File

@@ -13,7 +13,7 @@ from contextlib import nullcontext
from transformers import AutoTokenizer
from k_model import ModelConfig, Transformer
from dataset import PretrainDataset, SkyWorkPretrainDataset
from dataset import PretrainDataset
import swanlab
@@ -131,7 +131,7 @@ if __name__ == "__main__":
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_swanlab", type=bool, default=True, help="Use Weights & Biases")
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading")
parser.add_argument("--data_path", type=str, default="/home/user/szx/dataset/seq-monkey/seq_monkey_datawhale.jsonl", help="Path to training data")
parser.add_argument("--data_path", type=str, default="", help="Path to training data")
parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
@@ -152,7 +152,7 @@ if __name__ == "__main__":
args.device = "cpu"
if args.use_swanlab:
swanlab.login(api_key='BIYVGq2rfWmD9sFMCehUG')
swanlab.login(api_key='your key')
run = swanlab.init(
project="Tiny-LLM",
experiment_name="Pretrain-215M",
@@ -174,7 +174,7 @@ if __name__ == "__main__":
model, tokenizer = init_model()
train_ds = SkyWorkPretrainDataset(args.data_path, tokenizer, max_length=max_seq_len)
train_ds = PretrainDataset(args.data_path, tokenizer, max_length=max_seq_len)
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,

View File

@@ -139,7 +139,7 @@ if __name__ == "__main__":
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_swanlab", type=bool, default=True, help="Use Weights & Biases")
parser.add_argument("--num_workers", type=int, default=4, help="Number of workers for data loading")
parser.add_argument("--data_path", type=str, default="/home/user/szx/dataset/BelleGroup/sft.jsonl", help="Path to training data")
parser.add_argument("--data_path", type=str, default="", help="Path to training data")
parser.add_argument("--accumulation_steps", type=int, default=4, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
@@ -160,7 +160,7 @@ if __name__ == "__main__":
args.device = "cpu"
if args.use_swanlab:
swanlab.login(api_key='BIYVGq2rfWmD9sFMCehUG')
swanlab.login(api_key='your key')
run = swanlab.init(
project="Tiny-LLM",
experiment_name="BelleGropu-sft-215M",

View File

@@ -417,7 +417,7 @@ class Transformer(PreTrainedModel):
return idx[:, index:] # 只返回生成的token
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained("/home/user/szx/code/k-llm/tokenizer_k")
tokenizer = AutoTokenizer.from_pretrained("tokenizer_k")
args = ModelConfig(
dim=1024,
n_layers=18,

View File

@@ -8,7 +8,7 @@ import argparse
class TextGenerator:
def __init__(self,
checkpoint=None, # 模型检查点路径
checkpoint='out/SkyWork_pretrain_768_12_6144.pth', # 模型检查点路径
tokenizer_model_path='./tokenizer_k/', # 分词器模型路径
seed=42, # 随机种子,确保可重复性
device=None, # 设备,优先使用 CUDA如果没有可用的 CUDA则使用 CPU
@@ -33,8 +33,15 @@ class TextGenerator:
# 根据 dtype 选择适当的自动混合精度上下文
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[self.dtype]
self.ctx = nullcontext() if self.device_type == 'cpu' else torch.amp.autocast(device_type=self.device_type, dtype=ptdtype)
self.model = AutoModelForCausalLM.from_pretrained(self.checkpoint, trust_remote_code=True)
# 加载模型检查点文件
checkpoint_dict = torch.load(self.checkpoint, map_location=self.device) # 加载模型参数 # 初始化模型参数
self.model = Transformer(ModelConfig(dim=1024, n_layers=18)) # 实例化 Transformer 模型
sunwanted_prefix = '_orig_mod.'
for k, v in list(checkpoint_dict.items()):
if k.startswith(sunwanted_prefix):
checkpoint_dict[k[len(sunwanted_prefix):]] = checkpoint_dict.pop(k)
self.model.load_state_dict(checkpoint_dict, strict=False)
# 计算模型参数量
num_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
@@ -72,8 +79,8 @@ class TextGenerator:
start = self.chat_template(start)
# 将起始文本编码为 token id 序列
start_ids = self.tokenizer(start).data['input_ids']
# print('start_ids:', start_ids)
x = (torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...]) # 将编码后的 token id 转为 PyTorch 张量
# print(self.tokenizer.eos_token_id)
generated_texts = [] # 用于保存生成的文本样本
with torch.no_grad(): # 禁用梯度计算,提升效率
with self.ctx: # 进入自动混合精度的上下文(如果是 GPU 并使用 float16 时)
@@ -81,34 +88,64 @@ class TextGenerator:
y = self.model.generate(x, self.tokenizer.eos_token_id, max_new_tokens, temperature=temperature, top_k=top_k) # 生成文本
generated_texts.append(self.tokenizer.decode(y[0].tolist())) # 解码生成的 token 序列为可读文本
return generated_texts # 返回生成的文本样本
def pretrain_sample(self,
start="Hello!", # 生成文本的起始提示词,可以是任意字符串
num_samples=3, # 生成样本的数量,默认生成 3 个样本
max_new_tokens=256, # 每个样本生成的最大 token 数,默认最多生成 256 个 token
temperature=0.7, # 控制生成的随机性1.0 为标准,值越大越随机
top_k=300): # 保留概率最高的 top_k 个 token限制生成时的选择范围
"""
根据给定的起始文本生成样本。
:param start: 生成文本的起始提示词
:param num_samples: 要生成的文本样本数
:param max_new_tokens: 每个样本生成的最大 token 数
:param temperature: 控制生成的随机性,值越小生成越确定,值越大生成越随机
:param top_k: 限制生成时选择的 token 范围
:return: 生成的文本样本列表
"""
# 如果 start 是以 'FILE:' 开头,表示从文件中读取起始文本
if start.startswith('FILE:'):
with open(start[5:], 'r', encoding='utf-8') as f:
start = f.read() # 读取文件内容作为起始文本
# 将起始文本编码为 token id 序列
start_ids = self.tokenizer(start).data['input_ids']
# print('start_ids:', start_ids)
x = (torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...]) # 将编码后的 token id 转为 PyTorch 张量
# print(x.shape)
generated_texts = [] # 用于保存生成的文本样本
with torch.no_grad(): # 禁用梯度计算,提升效率
with self.ctx: # 进入自动混合精度的上下文(如果是 GPU 并使用 float16 时)
for k in range(num_samples): # 循环生成指定数量的样本
y = self.model.generate(x, max_new_tokens=max_new_tokens, temperature=temperature, top_k=top_k) # 生成文本
generated_texts.append(self.tokenizer.decode(y[0].tolist())) # 解码生成的 token 序列为可读文本
return generated_texts # 返回生成的文本样本
# 示例使用
if __name__ == "__main__":
print("\n ------------------- SFT Sample ------------------- \n")
sft_prompt_datas = [
'你好呀',
"中国的首都是哪里?",
"1+9等于",
"1+3等于几",
"单片机是什么?",
"你是谁?",
"谁创造了你?",
"1+1等于多少?",
]
generator = TextGenerator(checkpoint='./k-model-82M/') # 初始化生成器
generator = TextGenerator(checkpoint='./BeelGroup_sft_model_215M/sft_dim1024_layers18_vocab_size6144.pth') # 初始化生成器
for i in range(len(sft_prompt_datas)):
samples = generator.sft_sample(start=sft_prompt_datas[i], num_samples=1, max_new_tokens=512, temperature=0.75)
print(f"\nSample {i+1}:\nQuestion: {sft_prompt_datas[i]} \nAI answer: {samples[0]}\n{'-'*20}") # 打印生成的样本并用分隔线分割
# print("\n ------------------- Pretrain Sample ------------------- \n")
print("------------------- Pretrain Sample ------------------- \n")
# pretrain_prompt_datas = [
# '<|im_start|>近年来,单片机以其体积小、价格廉、面向控制等独特优点',
# '<|im_start|>明正德年间,迟姓由云南迁来居住,因靠磨山',
# '<|im_start|>中国矿业大学-北京CUMTB是一所以矿业为特色工',
# ]
pretrain_prompt_datas = [
'<|im_start|>北京大学是',
'<|im_start|>中国矿业大学(北京)地球科学与测绘工程学院',
]
# generator = TextGenerator(checkpoint='base_model/SkyWork_pretrain_768_12_6144.pth') # 初始化生成器
# for i in range(len(pretrain_prompt_datas)):
# samples = generator.pretrain_sample(start=pretrain_prompt_datas[i], num_samples=1, max_new_tokens=50, temperature=0.75)
# print(f"\nSample {i+1}:\nQuestion: {pretrain_prompt_datas[i]} \nAI answer: {samples[0]}\n{'-'*20}") # 打印生成的样本并用分隔线分割
generator = TextGenerator(checkpoint='./base_monkey_215M/pretrain_1024_18_6144.pth') # 初始化生成器
for i in range(len(pretrain_prompt_datas)):
samples = generator.pretrain_sample(start=pretrain_prompt_datas[i], num_samples=1, max_new_tokens=120, temperature=1.0)
print(f"\nSample {i+1}:\n{pretrain_prompt_datas[i]}{samples[0]}\n{'-'*20}") # 打印生成的样本并用分隔线分割

View File

@@ -1,66 +0,0 @@
import json
import random
import numpy as np
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="K-Model-215M LLM")
st.title("K-Model-215M LLM")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")
with st.sidebar:
st.markdown("## K-Model-215M LLM")
"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
# 创建一个滑块,用于选择最大长度,范围在 0 到 8192 之间,默认值为 512Qwen2.5 支持 128K 上下文,并能生成最多 8K tokens
st.sidebar.title("设定调整")
st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 128, 512, 512, step=1)
st.session_state.temperature = st.sidebar.slider("temperature", 0.1, 1.2, 0.75, step=0.01)
model_id = "./k-model-215M/"
# 定义一个函数,用于获取模型和 tokenizer
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto").eval()
return tokenizer, model
tokenizer, model = get_model()
# 如果 session_state 中没有 "messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]
# 遍历 session_state 中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():
# 在聊天界面上显示用户的输入
st.chat_message("user").write(prompt)
# 将用户输入添加到 session_state 中的 messages 列表中
st.session_state.messages.append({"role": "user", "content": prompt})
# 将对话输入模型,获得返回
input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)
input_ids = tokenizer(input_ids).data['input_ids']
x = (torch.tensor(input_ids, dtype=torch.long)[None, ...])
with torch.no_grad():
y = model.generate(x, tokenizer.eos_token_id, st.max_new_tokens, temperature=st.temperature)
response = tokenizer.decode(y[0].tolist())
# 将模型的输出添加到 session_state 中的 messages 列表中
st.session_state.messages.append({"role": "assistant", "content": response})
# 在聊天界面上显示模型的输出
st.chat_message("assistant").write(response)
# print(st.session_state) # 打印 session_state 调试

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB