From 0eea57b11f88ce21129b76f7be7e0558b2e048a6 Mon Sep 17 00:00:00 2001 From: KMnO4-zx <1021385881@qq.com> Date: Fri, 20 Jun 2025 15:04:23 +0800 Subject: [PATCH] =?UTF-8?q?docs:=20=E4=BF=AE=E5=A4=8D=E7=AB=A0=E8=8A=822?= =?UTF-8?q?=E4=B8=ADEmbedding=E5=B1=82=E7=9A=84=E6=8B=BC=E5=86=99=E9=94=99?= =?UTF-8?q?=E8=AF=AF?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/.DS_Store | Bin 6148 -> 0 bytes docs/chapter2/第二章 Transformer架构.md | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) delete mode 100644 docs/.DS_Store diff --git a/docs/.DS_Store b/docs/.DS_Store deleted file mode 100644 index e833b0e6bb27a7a7f25013247969fb746533cc40..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 6148 zcmeHKyH3ME5Zr|n5j3HrJU)QJNor&wBT*vKP(l(!ibS?}^!^<_0y=ssdOiR?fQs3> zRbt0>lnO;?SGt??-K=*!Qtom@#Dk|vMARXoHkx2-4_!^jy0l8{=!_(@f5#);(mh49 zyJ%Qp+k`n_4s4qPVFMV`lx`@a!tZyS&NDBTFHeANTH(yoBpJ=pk*pnjyc|D#zMaUE2{=0ANrJR-~8I- zSFfmR9d83&{gN(z{;JW{FX}o!YSabZ(yw*Ak}iH1zbv-X0i4+q?frn(n*-*6Ik0d* z_6LV17%S!h{nmlbUjcwEO#8sNBLkpQj1}{MSV3?|1%_1CD+Y&j%sb`9ih010POO&? z*2=6m6!z8ee&^}LaX{4p uS?kcQ(IkYI2lOfE^f>kdIf@U_d|=JV02nLg0WpKHKLXwc>&$^ab>J72`j$Wd diff --git a/docs/chapter2/第二章 Transformer架构.md b/docs/chapter2/第二章 Transformer架构.md index c725cde..d3915b0 100644 --- a/docs/chapter2/第二章 Transformer架构.md +++ b/docs/chapter2/第二章 Transformer架构.md @@ -568,7 +568,7 @@ class Decoder(nn.Module): 在前两章,我们分别深入剖析了 Attention 机制和 Transformer 的核心——Encoder、Decoder 结构,接下来,我们就可以基于上一章实现的组件,搭建起一个完整的 Transformer 模型。 -### 2.3.1 Embeddng 层 +### 2.3.1 Embedding 层 正如我们在第一章所讲过的,在 NLP 任务中,我们往往需要将自然语言的输入转化为机器可以处理的向量。在深度学习中,承担这个任务的组件就是 Embedding 层。