Files
easy-rl/projects/codes/MonteCarlo/task0.py
2022-08-15 22:31:37 +08:00

111 lines
4.5 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2022-08-15 18:12:13
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import datetime
import argparse
from common.utils import save_results,save_args,plot_rewards
from MonteCarlo.agent import FisrtVisitMC
from envs.racetrack_env import RacetrackEnv
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
def get_args():
""" 超参数
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='First-Visit MC',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='Racetrack',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.9,type=float,help="discounted factor")
parser.add_argument('--epsilon',default=0.15,type=float,help="the probability to select a random action")
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' )
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
n_actions = env.action_space.n
agent = FisrtVisitMC(n_actions, cfg)
return env,agent
def train(cfg, env, agent):
print("开始训练!")
print(f"环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}")
rewards = []
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
one_ep_transition = []
while True:
action = agent.sample(state)
next_state, reward, done = env.step(action)
ep_reward += reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
print("完成训练")
return {'rewards':rewards}
def test(cfg, env, agent):
print("开始测试!")
print(f"环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
rewards = []
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.predict(state)
next_state, reward, done = env.step(action)
ep_reward += reward
state = next_state
if done:
break
rewards.append(ep_reward)
print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}')
return {'rewards':rewards}
if __name__ == "__main__":
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上
agent.save(path = cfg.model_path) # 保存模型
save_results(res_dic, tag = 'train', path = cfg.result_path)
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train")
# 测试
env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试
agent.load(path = cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results(res_dic, tag='test',
path = cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果