477 lines
110 KiB
Plaintext
477 lines
110 KiB
Plaintext
{
|
||
"metadata": {
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.10-final"
|
||
},
|
||
"orig_nbformat": 2,
|
||
"kernelspec": {
|
||
"name": "python3",
|
||
"display_name": "Python 3.7.10 64-bit ('py37': conda)",
|
||
"metadata": {
|
||
"interpreter": {
|
||
"hash": "fbea1422c2cf61ed9c0cfc03f38f71cc9083cc288606edc4170b5309b352ce27"
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2,
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import sys,os\n",
|
||
"from pathlib import Path\n",
|
||
"curr_path = str(Path().absolute())\n",
|
||
"parent_path = str(Path().absolute().parent)\n",
|
||
"sys.path.append(parent_path) # add current terminal path to sys.path\n",
|
||
"\n",
|
||
"import gym\n",
|
||
"import torch\n",
|
||
"import numpy as np\n",
|
||
"import datetime\n",
|
||
"\n",
|
||
"from HierarchicalDQN.agent import HierarchicalDQN\n",
|
||
"from common.plot import plot_rewards\n",
|
||
"from common.utils import save_results"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"SEQUENCE = datetime.datetime.now().strftime(\n",
|
||
" \"%Y%m%d-%H%M%S\") # obtain current time\n",
|
||
"SAVED_MODEL_PATH = curr_path+\"/saved_model/\"+SEQUENCE+'/' # path to save model\n",
|
||
"if not os.path.exists(curr_path+\"/saved_model/\"):\n",
|
||
" os.mkdir(curr_path+\"/saved_model/\")\n",
|
||
"if not os.path.exists(SAVED_MODEL_PATH):\n",
|
||
" os.mkdir(SAVED_MODEL_PATH)\n",
|
||
"RESULT_PATH = curr_path+\"/results/\"+SEQUENCE+'/' # path to save rewards\n",
|
||
"if not os.path.exists(curr_path+\"/results/\"):\n",
|
||
" os.mkdir(curr_path+\"/results/\")\n",
|
||
"if not os.path.exists(RESULT_PATH):\n",
|
||
" os.mkdir(RESULT_PATH)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class HierarchicalDQNConfig:\n",
|
||
" def __init__(self):\n",
|
||
" self.algo = \"H-DQN\" # name of algo\n",
|
||
" self.gamma = 0.95\n",
|
||
" self.epsilon_start = 1 # start epsilon of e-greedy policy\n",
|
||
" self.epsilon_end = 0.01\n",
|
||
" self.epsilon_decay = 500\n",
|
||
" self.lr = 0.0001 # learning rate\n",
|
||
" self.memory_capacity = 20000 # Replay Memory capacity\n",
|
||
" self.batch_size = 64\n",
|
||
" self.train_eps = 300 # 训练的episode数目\n",
|
||
" self.target_update = 2 # target net的更新频率\n",
|
||
" self.eval_eps = 20 # 测试的episode数目\n",
|
||
" self.device = torch.device(\n",
|
||
" \"cuda\" if torch.cuda.is_available() else \"cpu\") # 检测gpu\n",
|
||
" self.hidden_dim = 256 # dimension of hidden layer"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def train(cfg, env, agent):\n",
|
||
" print('Start to train !')\n",
|
||
" rewards = []\n",
|
||
" ma_rewards = [] # moveing average reward\n",
|
||
" for i_episode in range(cfg.train_eps):\n",
|
||
" state = env.reset()\n",
|
||
" done = False\n",
|
||
" ep_reward = 0\n",
|
||
" while not done:\n",
|
||
" goal = agent.set_goal(state)\n",
|
||
" onehot_goal = agent.to_onehot(goal)\n",
|
||
" meta_state = state\n",
|
||
" extrinsic_reward = 0\n",
|
||
" while not done and goal != np.argmax(state):\n",
|
||
" goal_state = np.concatenate([state, onehot_goal])\n",
|
||
" action = agent.choose_action(goal_state)\n",
|
||
" next_state, reward, done, _ = env.step(action)\n",
|
||
" ep_reward += reward\n",
|
||
" extrinsic_reward += reward\n",
|
||
" intrinsic_reward = 1.0 if goal == np.argmax(\n",
|
||
" next_state) else 0.0\n",
|
||
" agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(\n",
|
||
" [next_state, onehot_goal]), done)\n",
|
||
" state = next_state\n",
|
||
" agent.update()\n",
|
||
" agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)\n",
|
||
" print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))\n",
|
||
" rewards.append(ep_reward)\n",
|
||
" if ma_rewards:\n",
|
||
" ma_rewards.append(\n",
|
||
" 0.9*ma_rewards[-1]+0.1*ep_reward)\n",
|
||
" else:\n",
|
||
" ma_rewards.append(ep_reward)\n",
|
||
" print('Complete training!')\n",
|
||
" return rewards, ma_rewards"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"output_type": "stream",
|
||
"name": "stdout",
|
||
"text": [
|
||
"Start to train !\n",
|
||
"Episode:1/300, Reward:25.0\n",
|
||
"Episode:2/300, Reward:26.0\n",
|
||
"Episode:3/300, Reward:23.0\n",
|
||
"Episode:4/300, Reward:19.0\n",
|
||
"Episode:5/300, Reward:23.0\n",
|
||
"Episode:6/300, Reward:21.0\n",
|
||
"Episode:7/300, Reward:21.0\n",
|
||
"Episode:8/300, Reward:22.0\n",
|
||
"Episode:9/300, Reward:15.0\n",
|
||
"Episode:10/300, Reward:12.0\n",
|
||
"Episode:11/300, Reward:39.0\n",
|
||
"Episode:12/300, Reward:42.0\n",
|
||
"Episode:13/300, Reward:79.0\n",
|
||
"Episode:14/300, Reward:54.0\n",
|
||
"Episode:15/300, Reward:28.0\n",
|
||
"Episode:16/300, Reward:85.0\n",
|
||
"Episode:17/300, Reward:46.0\n",
|
||
"Episode:18/300, Reward:37.0\n",
|
||
"Episode:19/300, Reward:45.0\n",
|
||
"Episode:20/300, Reward:79.0\n",
|
||
"Episode:21/300, Reward:80.0\n",
|
||
"Episode:22/300, Reward:154.0\n",
|
||
"Episode:23/300, Reward:74.0\n",
|
||
"Episode:24/300, Reward:129.0\n",
|
||
"Episode:25/300, Reward:185.0\n",
|
||
"Episode:26/300, Reward:200.0\n",
|
||
"Episode:27/300, Reward:115.0\n",
|
||
"Episode:28/300, Reward:104.0\n",
|
||
"Episode:29/300, Reward:200.0\n",
|
||
"Episode:30/300, Reward:118.0\n",
|
||
"Episode:31/300, Reward:200.0\n",
|
||
"Episode:32/300, Reward:200.0\n",
|
||
"Episode:33/300, Reward:83.0\n",
|
||
"Episode:34/300, Reward:75.0\n",
|
||
"Episode:35/300, Reward:46.0\n",
|
||
"Episode:36/300, Reward:96.0\n",
|
||
"Episode:37/300, Reward:78.0\n",
|
||
"Episode:38/300, Reward:150.0\n",
|
||
"Episode:39/300, Reward:147.0\n",
|
||
"Episode:40/300, Reward:74.0\n",
|
||
"Episode:41/300, Reward:137.0\n",
|
||
"Episode:42/300, Reward:182.0\n",
|
||
"Episode:43/300, Reward:200.0\n",
|
||
"Episode:44/300, Reward:200.0\n",
|
||
"Episode:45/300, Reward:200.0\n",
|
||
"Episode:46/300, Reward:184.0\n",
|
||
"Episode:47/300, Reward:200.0\n",
|
||
"Episode:48/300, Reward:200.0\n",
|
||
"Episode:49/300, Reward:200.0\n",
|
||
"Episode:50/300, Reward:61.0\n",
|
||
"Episode:51/300, Reward:9.0\n",
|
||
"Episode:52/300, Reward:9.0\n",
|
||
"Episode:53/300, Reward:200.0\n",
|
||
"Episode:54/300, Reward:200.0\n",
|
||
"Episode:55/300, Reward:200.0\n",
|
||
"Episode:56/300, Reward:200.0\n",
|
||
"Episode:57/300, Reward:200.0\n",
|
||
"Episode:58/300, Reward:200.0\n",
|
||
"Episode:59/300, Reward:200.0\n",
|
||
"Episode:60/300, Reward:167.0\n",
|
||
"Episode:61/300, Reward:200.0\n",
|
||
"Episode:62/300, Reward:200.0\n",
|
||
"Episode:63/300, Reward:200.0\n",
|
||
"Episode:64/300, Reward:200.0\n",
|
||
"Episode:65/300, Reward:200.0\n",
|
||
"Episode:66/300, Reward:200.0\n",
|
||
"Episode:67/300, Reward:200.0\n",
|
||
"Episode:68/300, Reward:200.0\n",
|
||
"Episode:69/300, Reward:197.0\n",
|
||
"Episode:70/300, Reward:200.0\n",
|
||
"Episode:71/300, Reward:200.0\n",
|
||
"Episode:72/300, Reward:200.0\n",
|
||
"Episode:73/300, Reward:200.0\n",
|
||
"Episode:74/300, Reward:200.0\n",
|
||
"Episode:75/300, Reward:200.0\n",
|
||
"Episode:76/300, Reward:200.0\n",
|
||
"Episode:77/300, Reward:200.0\n",
|
||
"Episode:78/300, Reward:200.0\n",
|
||
"Episode:79/300, Reward:200.0\n",
|
||
"Episode:80/300, Reward:200.0\n",
|
||
"Episode:81/300, Reward:181.0\n",
|
||
"Episode:82/300, Reward:200.0\n",
|
||
"Episode:83/300, Reward:200.0\n",
|
||
"Episode:84/300, Reward:200.0\n",
|
||
"Episode:85/300, Reward:200.0\n",
|
||
"Episode:86/300, Reward:200.0\n",
|
||
"Episode:87/300, Reward:200.0\n",
|
||
"Episode:88/300, Reward:200.0\n",
|
||
"Episode:89/300, Reward:200.0\n",
|
||
"Episode:90/300, Reward:200.0\n",
|
||
"Episode:91/300, Reward:200.0\n",
|
||
"Episode:92/300, Reward:200.0\n",
|
||
"Episode:93/300, Reward:200.0\n",
|
||
"Episode:94/300, Reward:200.0\n",
|
||
"Episode:95/300, Reward:200.0\n",
|
||
"Episode:96/300, Reward:200.0\n",
|
||
"Episode:97/300, Reward:200.0\n",
|
||
"Episode:98/300, Reward:200.0\n",
|
||
"Episode:99/300, Reward:192.0\n",
|
||
"Episode:100/300, Reward:183.0\n",
|
||
"Episode:101/300, Reward:200.0\n",
|
||
"Episode:102/300, Reward:200.0\n",
|
||
"Episode:103/300, Reward:200.0\n",
|
||
"Episode:104/300, Reward:200.0\n",
|
||
"Episode:105/300, Reward:200.0\n",
|
||
"Episode:106/300, Reward:200.0\n",
|
||
"Episode:107/300, Reward:200.0\n",
|
||
"Episode:108/300, Reward:200.0\n",
|
||
"Episode:109/300, Reward:200.0\n",
|
||
"Episode:110/300, Reward:200.0\n",
|
||
"Episode:111/300, Reward:200.0\n",
|
||
"Episode:112/300, Reward:200.0\n",
|
||
"Episode:113/300, Reward:200.0\n",
|
||
"Episode:114/300, Reward:200.0\n",
|
||
"Episode:115/300, Reward:200.0\n",
|
||
"Episode:116/300, Reward:200.0\n",
|
||
"Episode:117/300, Reward:200.0\n",
|
||
"Episode:118/300, Reward:200.0\n",
|
||
"Episode:119/300, Reward:200.0\n",
|
||
"Episode:120/300, Reward:196.0\n",
|
||
"Episode:121/300, Reward:200.0\n",
|
||
"Episode:122/300, Reward:200.0\n",
|
||
"Episode:123/300, Reward:200.0\n",
|
||
"Episode:124/300, Reward:200.0\n",
|
||
"Episode:125/300, Reward:200.0\n",
|
||
"Episode:126/300, Reward:189.0\n",
|
||
"Episode:127/300, Reward:193.0\n",
|
||
"Episode:128/300, Reward:200.0\n",
|
||
"Episode:129/300, Reward:200.0\n",
|
||
"Episode:130/300, Reward:193.0\n",
|
||
"Episode:131/300, Reward:183.0\n",
|
||
"Episode:132/300, Reward:183.0\n",
|
||
"Episode:133/300, Reward:200.0\n",
|
||
"Episode:134/300, Reward:200.0\n",
|
||
"Episode:135/300, Reward:200.0\n",
|
||
"Episode:136/300, Reward:200.0\n",
|
||
"Episode:137/300, Reward:200.0\n",
|
||
"Episode:138/300, Reward:200.0\n",
|
||
"Episode:139/300, Reward:100.0\n",
|
||
"Episode:140/300, Reward:118.0\n",
|
||
"Episode:141/300, Reward:99.0\n",
|
||
"Episode:142/300, Reward:185.0\n",
|
||
"Episode:143/300, Reward:41.0\n",
|
||
"Episode:144/300, Reward:11.0\n",
|
||
"Episode:145/300, Reward:9.0\n",
|
||
"Episode:146/300, Reward:152.0\n",
|
||
"Episode:147/300, Reward:155.0\n",
|
||
"Episode:148/300, Reward:181.0\n",
|
||
"Episode:149/300, Reward:197.0\n",
|
||
"Episode:150/300, Reward:200.0\n",
|
||
"Episode:151/300, Reward:200.0\n",
|
||
"Episode:152/300, Reward:200.0\n",
|
||
"Episode:153/300, Reward:200.0\n",
|
||
"Episode:154/300, Reward:200.0\n",
|
||
"Episode:155/300, Reward:200.0\n",
|
||
"Episode:156/300, Reward:123.0\n",
|
||
"Episode:157/300, Reward:11.0\n",
|
||
"Episode:158/300, Reward:8.0\n",
|
||
"Episode:159/300, Reward:9.0\n",
|
||
"Episode:160/300, Reward:10.0\n",
|
||
"Episode:161/300, Reward:9.0\n",
|
||
"Episode:162/300, Reward:10.0\n",
|
||
"Episode:163/300, Reward:9.0\n",
|
||
"Episode:164/300, Reward:9.0\n",
|
||
"Episode:165/300, Reward:10.0\n",
|
||
"Episode:166/300, Reward:9.0\n",
|
||
"Episode:167/300, Reward:9.0\n",
|
||
"Episode:168/300, Reward:9.0\n",
|
||
"Episode:169/300, Reward:9.0\n",
|
||
"Episode:170/300, Reward:10.0\n",
|
||
"Episode:171/300, Reward:9.0\n",
|
||
"Episode:172/300, Reward:9.0\n",
|
||
"Episode:173/300, Reward:11.0\n",
|
||
"Episode:174/300, Reward:11.0\n",
|
||
"Episode:175/300, Reward:10.0\n",
|
||
"Episode:176/300, Reward:9.0\n",
|
||
"Episode:177/300, Reward:10.0\n",
|
||
"Episode:178/300, Reward:8.0\n",
|
||
"Episode:179/300, Reward:9.0\n",
|
||
"Episode:180/300, Reward:9.0\n",
|
||
"Episode:181/300, Reward:10.0\n",
|
||
"Episode:182/300, Reward:10.0\n",
|
||
"Episode:183/300, Reward:9.0\n",
|
||
"Episode:184/300, Reward:10.0\n",
|
||
"Episode:185/300, Reward:10.0\n",
|
||
"Episode:186/300, Reward:13.0\n",
|
||
"Episode:187/300, Reward:16.0\n",
|
||
"Episode:188/300, Reward:117.0\n",
|
||
"Episode:189/300, Reward:13.0\n",
|
||
"Episode:190/300, Reward:16.0\n",
|
||
"Episode:191/300, Reward:11.0\n",
|
||
"Episode:192/300, Reward:11.0\n",
|
||
"Episode:193/300, Reward:13.0\n",
|
||
"Episode:194/300, Reward:13.0\n",
|
||
"Episode:195/300, Reward:9.0\n",
|
||
"Episode:196/300, Reward:20.0\n",
|
||
"Episode:197/300, Reward:12.0\n",
|
||
"Episode:198/300, Reward:10.0\n",
|
||
"Episode:199/300, Reward:14.0\n",
|
||
"Episode:200/300, Reward:12.0\n",
|
||
"Episode:201/300, Reward:14.0\n",
|
||
"Episode:202/300, Reward:12.0\n",
|
||
"Episode:203/300, Reward:11.0\n",
|
||
"Episode:204/300, Reward:10.0\n",
|
||
"Episode:205/300, Reward:13.0\n",
|
||
"Episode:206/300, Reward:10.0\n",
|
||
"Episode:207/300, Reward:10.0\n",
|
||
"Episode:208/300, Reward:13.0\n",
|
||
"Episode:209/300, Reward:9.0\n",
|
||
"Episode:210/300, Reward:11.0\n",
|
||
"Episode:211/300, Reward:14.0\n",
|
||
"Episode:212/300, Reward:10.0\n",
|
||
"Episode:213/300, Reward:20.0\n",
|
||
"Episode:214/300, Reward:12.0\n",
|
||
"Episode:215/300, Reward:13.0\n",
|
||
"Episode:216/300, Reward:17.0\n",
|
||
"Episode:217/300, Reward:17.0\n",
|
||
"Episode:218/300, Reward:11.0\n",
|
||
"Episode:219/300, Reward:15.0\n",
|
||
"Episode:220/300, Reward:26.0\n",
|
||
"Episode:221/300, Reward:73.0\n",
|
||
"Episode:222/300, Reward:44.0\n",
|
||
"Episode:223/300, Reward:48.0\n",
|
||
"Episode:224/300, Reward:102.0\n",
|
||
"Episode:225/300, Reward:162.0\n",
|
||
"Episode:226/300, Reward:123.0\n",
|
||
"Episode:227/300, Reward:200.0\n",
|
||
"Episode:228/300, Reward:200.0\n",
|
||
"Episode:229/300, Reward:120.0\n",
|
||
"Episode:230/300, Reward:173.0\n",
|
||
"Episode:231/300, Reward:138.0\n",
|
||
"Episode:232/300, Reward:106.0\n",
|
||
"Episode:233/300, Reward:193.0\n",
|
||
"Episode:234/300, Reward:117.0\n",
|
||
"Episode:235/300, Reward:120.0\n",
|
||
"Episode:236/300, Reward:98.0\n",
|
||
"Episode:237/300, Reward:98.0\n",
|
||
"Episode:238/300, Reward:200.0\n",
|
||
"Episode:239/300, Reward:96.0\n",
|
||
"Episode:240/300, Reward:170.0\n",
|
||
"Episode:241/300, Reward:107.0\n",
|
||
"Episode:242/300, Reward:107.0\n",
|
||
"Episode:243/300, Reward:200.0\n",
|
||
"Episode:244/300, Reward:128.0\n",
|
||
"Episode:245/300, Reward:165.0\n",
|
||
"Episode:246/300, Reward:168.0\n",
|
||
"Episode:247/300, Reward:200.0\n",
|
||
"Episode:248/300, Reward:200.0\n",
|
||
"Episode:249/300, Reward:200.0\n",
|
||
"Episode:250/300, Reward:200.0\n",
|
||
"Episode:251/300, Reward:200.0\n",
|
||
"Episode:252/300, Reward:200.0\n",
|
||
"Episode:253/300, Reward:200.0\n",
|
||
"Episode:254/300, Reward:200.0\n",
|
||
"Episode:255/300, Reward:200.0\n",
|
||
"Episode:256/300, Reward:200.0\n",
|
||
"Episode:257/300, Reward:164.0\n",
|
||
"Episode:258/300, Reward:200.0\n",
|
||
"Episode:259/300, Reward:190.0\n",
|
||
"Episode:260/300, Reward:185.0\n",
|
||
"Episode:261/300, Reward:200.0\n",
|
||
"Episode:262/300, Reward:200.0\n",
|
||
"Episode:263/300, Reward:200.0\n",
|
||
"Episode:264/300, Reward:200.0\n",
|
||
"Episode:265/300, Reward:168.0\n",
|
||
"Episode:266/300, Reward:200.0\n",
|
||
"Episode:267/300, Reward:200.0\n",
|
||
"Episode:268/300, Reward:200.0\n",
|
||
"Episode:269/300, Reward:200.0\n",
|
||
"Episode:270/300, Reward:200.0\n",
|
||
"Episode:271/300, Reward:200.0\n",
|
||
"Episode:272/300, Reward:200.0\n",
|
||
"Episode:273/300, Reward:200.0\n",
|
||
"Episode:274/300, Reward:200.0\n",
|
||
"Episode:275/300, Reward:188.0\n",
|
||
"Episode:276/300, Reward:200.0\n",
|
||
"Episode:277/300, Reward:177.0\n",
|
||
"Episode:278/300, Reward:200.0\n",
|
||
"Episode:279/300, Reward:200.0\n",
|
||
"Episode:280/300, Reward:200.0\n",
|
||
"Episode:281/300, Reward:200.0\n",
|
||
"Episode:282/300, Reward:200.0\n",
|
||
"Episode:283/300, Reward:200.0\n",
|
||
"Episode:284/300, Reward:189.0\n",
|
||
"Episode:285/300, Reward:200.0\n",
|
||
"Episode:286/300, Reward:200.0\n",
|
||
"Episode:287/300, Reward:200.0\n",
|
||
"Episode:288/300, Reward:200.0\n",
|
||
"Episode:289/300, Reward:200.0\n",
|
||
"Episode:290/300, Reward:200.0\n",
|
||
"Episode:291/300, Reward:200.0\n",
|
||
"Episode:292/300, Reward:200.0\n",
|
||
"Episode:293/300, Reward:200.0\n",
|
||
"Episode:294/300, Reward:200.0\n",
|
||
"Episode:295/300, Reward:200.0\n",
|
||
"Episode:296/300, Reward:200.0\n",
|
||
"Episode:297/300, Reward:200.0\n",
|
||
"Episode:298/300, Reward:200.0\n",
|
||
"Episode:299/300, Reward:200.0\n",
|
||
"Episode:300/300, Reward:200.0\n",
|
||
"Complete training!\n",
|
||
"results saved!\n"
|
||
]
|
||
},
|
||
{
|
||
"output_type": "display_data",
|
||
"data": {
|
||
"text/plain": "<Figure size 432x288 with 1 Axes>",
|
||
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"281.117344pt\" version=\"1.1\" viewBox=\"0 0 377.051094 281.117344\" width=\"377.051094pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-03-31T14:01:15.395751</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 281.117344 \nL 377.051094 281.117344 \nL 377.051094 0 \nL 0 0 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 35.051094 239.383125 \nL 369.851094 239.383125 \nL 369.851094 21.943125 \nL 35.051094 21.943125 \nz\n\" style=\"fill:#eaeaf2;\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 50.269276 239.383125 \nL 50.269276 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g style=\"fill:#262626;\" transform=\"translate(47.21076 256.756719)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 4.15625 35.296875 \nQ 4.15625 48 6.765625 55.734375 \nQ 9.375 63.484375 14.515625 67.671875 \nQ 19.671875 71.875 27.484375 71.875 \nQ 33.25 71.875 37.59375 69.546875 \nQ 41.9375 67.234375 44.765625 62.859375 \nQ 47.609375 58.5 49.21875 52.21875 \nQ 50.828125 45.953125 50.828125 35.296875 \nQ 50.828125 22.703125 48.234375 14.96875 \nQ 45.65625 7.234375 40.5 3 \nQ 35.359375 -1.21875 27.484375 -1.21875 \nQ 17.140625 -1.21875 11.234375 6.203125 \nQ 4.15625 15.140625 4.15625 35.296875 \nz\nM 13.1875 35.296875 \nQ 13.1875 17.671875 17.3125 11.828125 \nQ 21.4375 6 27.484375 6 \nQ 33.546875 6 37.671875 11.859375 \nQ 41.796875 17.71875 41.796875 35.296875 \nQ 41.796875 52.984375 37.671875 58.78125 \nQ 33.546875 64.59375 27.390625 64.59375 \nQ 21.34375 64.59375 17.71875 59.46875 \nQ 13.1875 52.9375 13.1875 35.296875 \nz\n\" id=\"ArialMT-48\"/>\n </defs>\n <use xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 101.166205 239.383125 \nL 101.166205 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_2\">\n <!-- 50 -->\n <g style=\"fill:#262626;\" transform=\"translate(95.049173 256.756719)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 4.15625 18.75 \nL 13.375 19.53125 \nQ 14.40625 12.796875 18.140625 9.390625 \nQ 21.875 6 27.15625 6 \nQ 33.5 6 37.890625 10.78125 \nQ 42.28125 15.578125 42.28125 23.484375 \nQ 42.28125 31 38.0625 35.34375 \nQ 33.84375 39.703125 27 39.703125 \nQ 22.75 39.703125 19.328125 37.765625 \nQ 15.921875 35.84375 13.96875 32.765625 \nL 5.71875 33.84375 \nL 12.640625 70.609375 \nL 48.25 70.609375 \nL 48.25 62.203125 \nL 19.671875 62.203125 \nL 15.828125 42.96875 \nQ 22.265625 47.46875 29.34375 47.46875 \nQ 38.71875 47.46875 45.15625 40.96875 \nQ 51.609375 34.46875 51.609375 24.265625 \nQ 51.609375 14.546875 45.953125 7.46875 \nQ 39.0625 -1.21875 27.15625 -1.21875 \nQ 17.390625 -1.21875 11.203125 4.25 \nQ 5.03125 9.71875 4.15625 18.75 \nz\n\" id=\"ArialMT-53\"/>\n </defs>\n <use xlink:href=\"#ArialMT-53\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 152.063134 239.383125 \nL 152.063134 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_3\">\n <!-- 100 -->\n <g style=\"fill:#262626;\" transform=\"translate(142.887587 256.756719)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 37.25 0 \nL 28.46875 0 \nL 28.46875 56 \nQ 25.296875 52.984375 20.140625 49.953125 \nQ 14.984375 46.921875 10.890625 45.40625 \nL 10.890625 53.90625 \nQ 18.265625 57.375 23.78125 62.296875 \nQ 29.296875 67.234375 31.59375 71.875 \nL 37.25 71.875 \nz\n\" id=\"ArialMT-49\"/>\n </defs>\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 202.960063 239.383125 \nL 202.960063 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_4\">\n <!-- 150 -->\n <g style=\"fill:#262626;\" transform=\"translate(193.784516 256.756719)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-53\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 253.856992 239.383125 \nL 253.856992 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_5\">\n <!-- 200 -->\n <g style=\"fill:#262626;\" transform=\"translate(244.681445 256.756719)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 50.34375 8.453125 \nL 50.34375 0 \nL 3.03125 0 \nQ 2.9375 3.171875 4.046875 6.109375 \nQ 5.859375 10.9375 9.828125 15.625 \nQ 13.8125 20.3125 21.34375 26.46875 \nQ 33.015625 36.03125 37.109375 41.625 \nQ 41.21875 47.21875 41.21875 52.203125 \nQ 41.21875 57.421875 37.46875 61 \nQ 33.734375 64.59375 27.734375 64.59375 \nQ 21.390625 64.59375 17.578125 60.78125 \nQ 13.765625 56.984375 13.71875 50.25 \nL 4.6875 51.171875 \nQ 5.609375 61.28125 11.65625 66.578125 \nQ 17.71875 71.875 27.9375 71.875 \nQ 38.234375 71.875 44.234375 66.15625 \nQ 50.25 60.453125 50.25 52 \nQ 50.25 47.703125 48.484375 43.546875 \nQ 46.734375 39.40625 42.65625 34.8125 \nQ 38.578125 30.21875 29.109375 22.21875 \nQ 21.1875 15.578125 18.9375 13.203125 \nQ 16.703125 10.84375 15.234375 8.453125 \nz\n\" id=\"ArialMT-50\"/>\n </defs>\n <use xlink:href=\"#ArialMT-50\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_6\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 304.753921 239.383125 \nL 304.753921 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_6\">\n <!-- 250 -->\n <g style=\"fill:#262626;\" transform=\"translate(295.578374 256.756719)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-50\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-53\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_7\">\n <g id=\"line2d_7\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 355.650851 239.383125 \nL 355.650851 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_7\">\n <!-- 300 -->\n <g style=\"fill:#262626;\" transform=\"translate(346.475304 256.756719)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 4.203125 18.890625 \nL 12.984375 20.0625 \nQ 14.5 12.59375 18.140625 9.296875 \nQ 21.78125 6 27 6 \nQ 33.203125 6 37.46875 10.296875 \nQ 41.75 14.59375 41.75 20.953125 \nQ 41.75 27 37.796875 30.921875 \nQ 33.84375 34.859375 27.734375 34.859375 \nQ 25.25 34.859375 21.53125 33.890625 \nL 22.515625 41.609375 \nQ 23.390625 41.5 23.921875 41.5 \nQ 29.546875 41.5 34.03125 44.421875 \nQ 38.53125 47.359375 38.53125 53.46875 \nQ 38.53125 58.296875 35.25 61.46875 \nQ 31.984375 64.65625 26.8125 64.65625 \nQ 21.6875 64.65625 18.265625 61.421875 \nQ 14.84375 58.203125 13.875 51.765625 \nL 5.078125 53.328125 \nQ 6.6875 62.15625 12.390625 67.015625 \nQ 18.109375 71.875 26.609375 71.875 \nQ 32.46875 71.875 37.390625 69.359375 \nQ 42.328125 66.84375 44.9375 62.5 \nQ 47.5625 58.15625 47.5625 53.265625 \nQ 47.5625 48.640625 45.0625 44.828125 \nQ 42.578125 41.015625 37.703125 38.765625 \nQ 44.046875 37.3125 47.5625 32.6875 \nQ 51.078125 28.078125 51.078125 21.140625 \nQ 51.078125 11.765625 44.234375 5.25 \nQ 37.40625 -1.265625 26.953125 -1.265625 \nQ 17.53125 -1.265625 11.296875 4.34375 \nQ 5.078125 9.96875 4.203125 18.890625 \nz\n\" id=\"ArialMT-51\"/>\n </defs>\n <use xlink:href=\"#ArialMT-51\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- epsiodes -->\n <g style=\"fill:#262626;\" transform=\"translate(178.435156 271.532344)scale(0.12 -0.12)\">\n <defs>\n <path d=\"M 42.09375 16.703125 \nL 51.171875 15.578125 \nQ 49.03125 7.625 43.21875 3.21875 \nQ 37.40625 -1.171875 28.375 -1.171875 \nQ 17 -1.171875 10.328125 5.828125 \nQ 3.65625 12.84375 3.65625 25.484375 \nQ 3.65625 38.578125 10.390625 45.796875 \nQ 17.140625 53.03125 27.875 53.03125 \nQ 38.28125 53.03125 44.875 45.953125 \nQ 51.46875 38.875 51.46875 26.03125 \nQ 51.46875 25.25 51.421875 23.6875 \nL 12.75 23.6875 \nQ 13.234375 15.140625 17.578125 10.59375 \nQ 21.921875 6.0625 28.421875 6.0625 \nQ 33.25 6.0625 36.671875 8.59375 \nQ 40.09375 11.140625 42.09375 16.703125 \nz\nM 13.234375 30.90625 \nL 42.1875 30.90625 \nQ 41.609375 37.453125 38.875 40.71875 \nQ 34.671875 45.796875 27.984375 45.796875 \nQ 21.921875 45.796875 17.796875 41.75 \nQ 13.671875 37.703125 13.234375 30.90625 \nz\n\" id=\"ArialMT-101\"/>\n <path d=\"M 6.59375 -19.875 \nL 6.59375 51.859375 \nL 14.59375 51.859375 \nL 14.59375 45.125 \nQ 17.4375 49.078125 21 51.046875 \nQ 24.5625 53.03125 29.640625 53.03125 \nQ 36.28125 53.03125 41.359375 49.609375 \nQ 46.4375 46.1875 49.015625 39.953125 \nQ 51.609375 33.734375 51.609375 26.3125 \nQ 51.609375 18.359375 48.75 11.984375 \nQ 45.90625 5.609375 40.453125 2.21875 \nQ 35.015625 -1.171875 29 -1.171875 \nQ 24.609375 -1.171875 21.109375 0.6875 \nQ 17.625 2.546875 15.375 5.375 \nL 15.375 -19.875 \nz\nM 14.546875 25.640625 \nQ 14.546875 15.625 18.59375 10.84375 \nQ 22.65625 6.0625 28.421875 6.0625 \nQ 34.28125 6.0625 38.453125 11.015625 \nQ 42.625 15.96875 42.625 26.375 \nQ 42.625 36.28125 38.546875 41.203125 \nQ 34.46875 46.140625 28.8125 46.140625 \nQ 23.1875 46.140625 18.859375 40.890625 \nQ 14.546875 35.640625 14.546875 25.640625 \nz\n\" id=\"ArialMT-112\"/>\n <path d=\"M 3.078125 15.484375 \nL 11.765625 16.84375 \nQ 12.5 11.625 15.84375 8.84375 \nQ 19.1875 6.0625 25.203125 6.0625 \nQ 31.25 6.0625 34.171875 8.515625 \nQ 37.109375 10.984375 37.109375 14.3125 \nQ 37.109375 17.28125 34.515625 19 \nQ 32.71875 20.171875 25.53125 21.96875 \nQ 15.875 24.421875 12.140625 26.203125 \nQ 8.40625 27.984375 6.46875 31.125 \nQ 4.546875 34.28125 4.546875 38.09375 \nQ 4.546875 41.546875 6.125 44.5 \nQ 7.71875 47.46875 10.453125 49.421875 \nQ 12.5 50.921875 16.03125 51.96875 \nQ 19.578125 53.03125 23.640625 53.03125 \nQ 29.734375 53.03125 34.34375 51.265625 \nQ 38.96875 49.515625 41.15625 46.5 \nQ 43.359375 43.5 44.1875 38.484375 \nL 35.59375 37.3125 \nQ 35.015625 41.3125 32.203125 43.546875 \nQ 29.390625 45.796875 24.265625 45.796875 \nQ 18.21875 45.796875 15.625 43.796875 \nQ 13.03125 41.796875 13.03125 39.109375 \nQ 13.03125 37.40625 14.109375 36.03125 \nQ 15.1875 34.625 17.484375 33.6875 \nQ 18.796875 33.203125 25.25 31.453125 \nQ 34.578125 28.953125 38.25 27.359375 \nQ 41.9375 25.78125 44.03125 22.75 \nQ 46.140625 19.734375 46.140625 15.234375 \nQ 46.140625 10.84375 43.578125 6.953125 \nQ 41.015625 3.078125 36.171875 0.953125 \nQ 31.34375 -1.171875 25.25 -1.171875 \nQ 15.140625 -1.171875 9.84375 3.03125 \nQ 4.546875 7.234375 3.078125 15.484375 \nz\n\" id=\"ArialMT-115\"/>\n <path d=\"M 6.640625 61.46875 \nL 6.640625 71.578125 \nL 15.4375 71.578125 \nL 15.4375 61.46875 \nz\nM 6.640625 0 \nL 6.640625 51.859375 \nL 15.4375 51.859375 \nL 15.4375 0 \nz\n\" id=\"ArialMT-105\"/>\n <path d=\"M 3.328125 25.921875 \nQ 3.328125 40.328125 11.328125 47.265625 \nQ 18.015625 53.03125 27.640625 53.03125 \nQ 38.328125 53.03125 45.109375 46.015625 \nQ 51.90625 39.015625 51.90625 26.65625 \nQ 51.90625 16.65625 48.90625 10.90625 \nQ 45.90625 5.171875 40.15625 2 \nQ 34.421875 -1.171875 27.640625 -1.171875 \nQ 16.75 -1.171875 10.03125 5.8125 \nQ 3.328125 12.796875 3.328125 25.921875 \nz\nM 12.359375 25.921875 \nQ 12.359375 15.96875 16.703125 11.015625 \nQ 21.046875 6.0625 27.640625 6.0625 \nQ 34.1875 6.0625 38.53125 11.03125 \nQ 42.875 16.015625 42.875 26.21875 \nQ 42.875 35.84375 38.5 40.796875 \nQ 34.125 45.75 27.640625 45.75 \nQ 21.046875 45.75 16.703125 40.8125 \nQ 12.359375 35.890625 12.359375 25.921875 \nz\n\" id=\"ArialMT-111\"/>\n <path d=\"M 40.234375 0 \nL 40.234375 6.546875 \nQ 35.296875 -1.171875 25.734375 -1.171875 \nQ 19.53125 -1.171875 14.328125 2.25 \nQ 9.125 5.671875 6.265625 11.796875 \nQ 3.421875 17.921875 3.421875 25.875 \nQ 3.421875 33.640625 6 39.96875 \nQ 8.59375 46.296875 13.765625 49.65625 \nQ 18.953125 53.03125 25.34375 53.03125 \nQ 30.03125 53.03125 33.6875 51.046875 \nQ 37.359375 49.078125 39.65625 45.90625 \nL 39.65625 71.578125 \nL 48.390625 71.578125 \nL 48.390625 0 \nz\nM 12.453125 25.875 \nQ 12.453125 15.921875 16.640625 10.984375 \nQ 20.84375 6.0625 26.5625 6.0625 \nQ 32.328125 6.0625 36.34375 10.765625 \nQ 40.375 15.484375 40.375 25.140625 \nQ 40.375 35.796875 36.265625 40.765625 \nQ 32.171875 45.75 26.171875 45.75 \nQ 20.3125 45.75 16.375 40.96875 \nQ 12.453125 36.1875 12.453125 25.875 \nz\n\" id=\"ArialMT-100\"/>\n </defs>\n <use xlink:href=\"#ArialMT-101\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-112\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-115\"/>\n <use x=\"161.230469\" xlink:href=\"#ArialMT-105\"/>\n <use x=\"183.447266\" xlink:href=\"#ArialMT-111\"/>\n <use x=\"239.0625\" xlink:href=\"#ArialMT-100\"/>\n <use x=\"294.677734\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"350.292969\" xlink:href=\"#ArialMT-115\"/>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_8\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 237.735852 \nL 369.851094 237.735852 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_9\">\n <!-- 0 -->\n <g style=\"fill:#262626;\" transform=\"translate(19.434063 241.672649)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_9\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 211.997216 \nL 369.851094 211.997216 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_10\">\n <!-- 25 -->\n <g style=\"fill:#262626;\" transform=\"translate(13.317031 215.934013)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-50\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_10\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 186.25858 \nL 369.851094 186.25858 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_11\">\n <!-- 50 -->\n <g style=\"fill:#262626;\" transform=\"translate(13.317031 190.195376)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-53\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_11\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 160.519943 \nL 369.851094 160.519943 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_12\">\n <!-- 75 -->\n <g style=\"fill:#262626;\" transform=\"translate(13.317031 164.45674)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 4.734375 62.203125 \nL 4.734375 70.65625 \nL 51.078125 70.65625 \nL 51.078125 63.8125 \nQ 44.234375 56.546875 37.515625 44.484375 \nQ 30.8125 32.421875 27.15625 19.671875 \nQ 24.515625 10.6875 23.78125 0 \nL 14.75 0 \nQ 14.890625 8.453125 18.0625 20.40625 \nQ 21.234375 32.375 27.171875 43.484375 \nQ 33.109375 54.59375 39.796875 62.203125 \nz\n\" id=\"ArialMT-55\"/>\n </defs>\n <use xlink:href=\"#ArialMT-55\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_12\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 134.781307 \nL 369.851094 134.781307 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_13\">\n <!-- 100 -->\n <g style=\"fill:#262626;\" transform=\"translate(7.2 138.718104)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_13\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 109.04267 \nL 369.851094 109.04267 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_14\">\n <!-- 125 -->\n <g style=\"fill:#262626;\" transform=\"translate(7.2 112.979467)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-50\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_7\">\n <g id=\"line2d_14\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 83.304034 \nL 369.851094 83.304034 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_15\">\n <!-- 150 -->\n <g style=\"fill:#262626;\" transform=\"translate(7.2 87.240831)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-53\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_8\">\n <g id=\"line2d_15\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 57.565398 \nL 369.851094 57.565398 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_16\">\n <!-- 175 -->\n <g style=\"fill:#262626;\" transform=\"translate(7.2 61.502195)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-49\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-55\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_9\">\n <g id=\"line2d_16\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 35.051094 31.826761 \nL 369.851094 31.826761 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:round;\"/>\n </g>\n <g id=\"text_17\">\n <!-- 200 -->\n <g style=\"fill:#262626;\" transform=\"translate(7.2 35.763558)scale(0.11 -0.11)\">\n <use xlink:href=\"#ArialMT-50\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-48\"/>\n <use x=\"111.230469\" xlink:href=\"#ArialMT-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"line2d_17\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 50.269276 211.997216 \nL 51.287214 210.96767 \nL 52.305153 214.056307 \nL 53.323091 218.174489 \nL 54.34103 214.056307 \nL 55.358968 216.115398 \nL 56.376907 216.115398 \nL 57.394846 215.085852 \nL 58.412784 222.29267 \nL 59.430723 225.381307 \nL 60.448661 197.58358 \nL 61.4666 194.494943 \nL 62.484539 156.401761 \nL 64.520416 208.90858 \nL 65.538354 150.224489 \nL 66.556293 190.376761 \nL 67.574231 199.64267 \nL 68.59217 191.406307 \nL 69.610109 156.401761 \nL 70.628047 155.372216 \nL 71.645986 79.185852 \nL 72.663924 161.549489 \nL 74.699802 47.269943 \nL 75.71774 31.826761 \nL 76.735679 119.338125 \nL 77.753617 130.663125 \nL 78.771556 31.826761 \nL 79.789494 116.249489 \nL 80.807433 31.826761 \nL 81.825372 31.826761 \nL 82.84331 152.28358 \nL 83.861249 160.519943 \nL 84.879187 190.376761 \nL 85.897126 138.899489 \nL 86.915065 157.431307 \nL 87.933003 83.304034 \nL 88.950942 86.39267 \nL 89.96888 161.549489 \nL 90.986819 96.688125 \nL 92.004757 50.35858 \nL 93.022696 31.826761 \nL 95.058573 31.826761 \nL 96.076512 48.299489 \nL 97.09445 31.826761 \nL 99.130328 31.826761 \nL 100.148266 174.93358 \nL 101.166205 228.469943 \nL 102.184143 228.469943 \nL 103.202082 31.826761 \nL 109.309713 31.826761 \nL 110.327652 65.801761 \nL 111.345591 31.826761 \nL 118.471161 31.826761 \nL 119.489099 34.915398 \nL 120.507038 31.826761 \nL 130.686424 31.826761 \nL 131.704362 51.388125 \nL 132.722301 31.826761 \nL 149.009318 31.826761 \nL 150.027257 40.063125 \nL 151.045195 49.329034 \nL 152.063134 31.826761 \nL 170.386028 31.826761 \nL 171.403967 35.944943 \nL 172.421906 31.826761 \nL 176.49366 31.826761 \nL 177.511598 43.151761 \nL 178.529537 39.03358 \nL 179.547476 31.826761 \nL 180.565414 31.826761 \nL 181.583353 39.03358 \nL 182.601291 49.329034 \nL 183.61923 49.329034 \nL 184.637169 31.826761 \nL 189.726861 31.826761 \nL 190.7448 134.781307 \nL 191.762739 116.249489 \nL 192.780677 135.810852 \nL 193.798616 47.269943 \nL 194.816554 195.524489 \nL 195.834493 226.410852 \nL 196.852432 228.469943 \nL 197.87037 81.244943 \nL 198.888309 78.156307 \nL 199.906247 51.388125 \nL 200.924186 34.915398 \nL 201.942124 31.826761 \nL 207.031817 31.826761 \nL 208.049756 111.101761 \nL 209.067695 226.410852 \nL 210.085633 229.499489 \nL 212.12151 227.440398 \nL 213.139449 228.469943 \nL 214.157387 227.440398 \nL 215.175326 228.469943 \nL 216.193265 228.469943 \nL 217.211203 227.440398 \nL 218.229142 228.469943 \nL 221.282958 228.469943 \nL 222.300896 227.440398 \nL 223.318835 228.469943 \nL 224.336773 228.469943 \nL 225.354712 226.410852 \nL 226.37265 226.410852 \nL 228.408528 228.469943 \nL 229.426466 227.440398 \nL 230.444405 229.499489 \nL 231.462343 228.469943 \nL 232.480282 228.469943 \nL 233.498221 227.440398 \nL 234.516159 227.440398 \nL 235.534098 228.469943 \nL 236.552036 227.440398 \nL 237.569975 227.440398 \nL 239.605852 221.263125 \nL 240.623791 117.279034 \nL 241.641729 224.351761 \nL 242.659668 221.263125 \nL 243.677606 226.410852 \nL 244.695545 226.410852 \nL 245.713484 224.351761 \nL 246.731422 224.351761 \nL 247.749361 228.469943 \nL 248.767299 217.144943 \nL 249.785238 225.381307 \nL 250.803176 227.440398 \nL 251.821115 223.322216 \nL 252.839054 225.381307 \nL 253.856992 223.322216 \nL 254.874931 225.381307 \nL 256.910808 227.440398 \nL 257.928747 224.351761 \nL 258.946685 227.440398 \nL 259.964624 227.440398 \nL 260.982562 224.351761 \nL 262.000501 228.469943 \nL 263.018439 226.410852 \nL 264.036378 223.322216 \nL 265.054317 227.440398 \nL 266.072255 217.144943 \nL 267.090194 225.381307 \nL 268.108132 224.351761 \nL 269.126071 220.23358 \nL 270.14401 220.23358 \nL 271.161948 226.410852 \nL 272.179887 222.29267 \nL 273.197825 210.96767 \nL 274.215764 162.579034 \nL 275.233702 192.435852 \nL 276.251641 188.31767 \nL 277.26958 132.722216 \nL 278.287518 70.949489 \nL 279.305457 111.101761 \nL 280.323395 31.826761 \nL 281.341334 31.826761 \nL 282.359273 114.190398 \nL 283.377211 59.624489 \nL 285.413088 128.604034 \nL 286.431027 39.03358 \nL 287.448965 117.279034 \nL 288.466904 114.190398 \nL 289.484843 136.840398 \nL 290.502781 136.840398 \nL 291.52072 31.826761 \nL 292.538658 138.899489 \nL 293.556597 62.713125 \nL 294.574536 127.574489 \nL 295.592474 127.574489 \nL 296.610413 31.826761 \nL 297.628351 105.954034 \nL 298.64629 67.860852 \nL 299.664228 64.772216 \nL 300.682167 31.826761 \nL 309.843614 31.826761 \nL 310.861553 68.890398 \nL 311.879491 31.826761 \nL 312.89743 42.122216 \nL 313.915369 47.269943 \nL 314.933307 31.826761 \nL 317.987123 31.826761 \nL 319.005062 64.772216 \nL 320.023 31.826761 \nL 328.166509 31.826761 \nL 329.184447 44.181307 \nL 330.202386 31.826761 \nL 331.220325 55.506307 \nL 332.238263 31.826761 \nL 337.327956 31.826761 \nL 338.345895 43.151761 \nL 339.363833 31.826761 \nL 354.632912 31.826761 \nL 354.632912 31.826761 \n\" style=\"fill:none;stroke:#4c72b0;stroke-linecap:round;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_18\">\n <path clip-path=\"url(#p4c532b25cd)\" d=\"M 50.269276 211.997216 \nL 51.287214 211.894261 \nL 52.305153 212.110466 \nL 53.323091 212.716868 \nL 54.34103 212.850812 \nL 56.376907 213.471083 \nL 57.394846 213.63256 \nL 58.412784 214.498571 \nL 59.430723 215.586845 \nL 61.4666 211.857361 \nL 62.484539 206.311801 \nL 63.502477 203.894661 \nL 64.520416 204.396052 \nL 65.538354 198.978896 \nL 66.556293 198.118683 \nL 67.574231 198.271081 \nL 68.59217 197.584604 \nL 70.628047 189.656909 \nL 71.645986 178.609804 \nL 72.663924 176.903772 \nL 73.681863 169.705844 \nL 75.71774 144.898704 \nL 76.735679 142.342647 \nL 77.753617 141.174694 \nL 78.771556 130.239901 \nL 79.789494 128.84086 \nL 81.825372 110.408181 \nL 83.861249 119.188143 \nL 84.879187 126.307005 \nL 85.897126 127.566253 \nL 86.915065 130.552759 \nL 87.933003 125.827886 \nL 88.950942 121.884365 \nL 89.96888 125.850877 \nL 90.986819 122.934602 \nL 92.004757 115.677 \nL 94.040635 99.745454 \nL 95.058573 92.953585 \nL 96.076512 88.488175 \nL 98.112389 77.722507 \nL 99.130328 73.132932 \nL 100.148266 83.312997 \nL 102.184143 110.892817 \nL 104.22002 95.870266 \nL 106.255898 83.702 \nL 108.291775 73.845705 \nL 109.309713 69.643811 \nL 110.327652 69.259606 \nL 112.363529 62.147365 \nL 114.399406 56.38645 \nL 116.435283 51.72011 \nL 118.471161 47.940373 \nL 120.507038 45.156764 \nL 122.542915 42.624064 \nL 124.578792 40.572576 \nL 126.614669 38.910871 \nL 128.650546 37.564891 \nL 130.686424 36.474646 \nL 131.704362 37.965994 \nL 133.740239 36.79954 \nL 135.776117 35.854712 \nL 138.829932 34.763137 \nL 141.883748 33.967379 \nL 144.937564 33.387272 \nL 149.009318 32.850612 \nL 150.027257 33.571864 \nL 151.045195 35.147581 \nL 154.099011 34.247639 \nL 157.152827 33.591581 \nL 161.224581 32.984659 \nL 166.314274 32.510489 \nL 170.386028 32.275355 \nL 171.403967 32.642314 \nL 176.49366 32.308337 \nL 177.511598 33.392679 \nL 178.529537 33.956769 \nL 180.565414 33.552068 \nL 181.583353 34.100219 \nL 183.61923 36.993694 \nL 185.655107 36.011977 \nL 187.690984 35.216786 \nL 189.726861 34.572681 \nL 190.7448 44.593544 \nL 191.762739 51.759138 \nL 192.780677 60.16431 \nL 193.798616 58.874873 \nL 194.816554 72.539835 \nL 196.852432 101.981237 \nL 198.888309 97.732478 \nL 199.906247 93.098042 \nL 201.942124 81.734476 \nL 203.978002 72.25201 \nL 206.013879 64.571213 \nL 207.031817 61.296768 \nL 208.049756 66.277267 \nL 210.085633 97.011512 \nL 212.12151 121.885659 \nL 213.139449 132.544088 \nL 215.175326 150.677341 \nL 216.193265 158.456601 \nL 218.229142 171.666477 \nL 220.265019 182.459136 \nL 221.282958 187.060217 \nL 223.318835 194.835405 \nL 224.336773 198.198859 \nL 226.37265 203.559138 \nL 228.408528 208.199532 \nL 230.444405 212.061205 \nL 232.480282 215.178866 \nL 234.516159 217.508557 \nL 235.534098 218.604695 \nL 237.569975 220.283479 \nL 238.587913 220.690307 \nL 239.605852 220.747589 \nL 240.623791 210.400733 \nL 241.641729 211.795836 \nL 242.659668 212.742565 \nL 244.695545 215.33954 \nL 246.731422 217.051862 \nL 247.749361 218.19367 \nL 248.767299 218.088797 \nL 250.803176 219.680283 \nL 251.821115 220.044476 \nL 252.839054 220.578159 \nL 253.856992 220.852565 \nL 255.892869 221.815981 \nL 256.910808 222.378422 \nL 257.928747 222.575756 \nL 259.964624 223.500038 \nL 260.982562 223.58521 \nL 262.000501 224.073684 \nL 263.018439 224.307401 \nL 264.036378 224.208882 \nL 265.054317 224.532034 \nL 266.072255 223.793325 \nL 267.090194 223.952123 \nL 268.108132 223.992087 \nL 270.14401 223.27797 \nL 271.161948 223.591259 \nL 272.179887 223.4614 \nL 273.197825 222.212027 \nL 274.215764 216.248728 \nL 276.251641 211.312463 \nL 277.26958 203.453438 \nL 278.287518 190.203043 \nL 279.305457 182.292915 \nL 281.341334 153.704346 \nL 282.359273 149.752951 \nL 283.377211 140.740105 \nL 284.39515 136.231952 \nL 285.413088 135.469161 \nL 286.431027 125.825602 \nL 287.448965 124.970946 \nL 288.466904 123.892891 \nL 290.502781 126.352917 \nL 291.52072 116.900302 \nL 292.538658 119.10022 \nL 293.556597 113.461511 \nL 295.592474 116.142977 \nL 296.610413 107.711355 \nL 297.628351 107.535623 \nL 299.664228 99.688553 \nL 301.700106 86.794812 \nL 303.735983 76.350883 \nL 305.77186 67.8913 \nL 307.807737 61.039037 \nL 309.843614 55.488705 \nL 310.861553 56.828874 \nL 311.879491 54.328663 \nL 312.89743 53.108018 \nL 313.915369 52.524211 \nL 315.951246 48.591695 \nL 317.987123 45.406358 \nL 319.005062 47.342944 \nL 321.040939 44.394869 \nL 323.076816 42.006929 \nL 325.112693 40.072697 \nL 327.14857 38.505969 \nL 328.166509 37.838048 \nL 329.184447 38.472374 \nL 330.202386 37.807813 \nL 331.220325 39.577662 \nL 333.256202 38.104991 \nL 335.292079 36.912127 \nL 337.327956 35.945908 \nL 338.345895 36.666493 \nL 340.381772 35.746944 \nL 343.435588 34.684575 \nL 346.489403 33.910107 \nL 349.543219 33.345521 \nL 353.614973 32.823219 \nL 354.632912 32.723573 \nL 354.632912 32.723573 \n\" style=\"fill:none;stroke:#dd8452;stroke-linecap:round;stroke-width:1.5;\"/>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 35.051094 239.383125 \nL 35.051094 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 369.851094 239.383125 \nL 369.851094 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 35.051094 239.383125 \nL 369.851094 239.383125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 35.051094 21.943125 \nL 369.851094 21.943125 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;stroke-width:1.25;\"/>\n </g>\n <g id=\"text_18\">\n <!-- average learning curve of H-DQN -->\n <g style=\"fill:#262626;\" transform=\"translate(113.417656 15.943125)scale(0.12 -0.12)\">\n <defs>\n <path d=\"M 40.4375 6.390625 \nQ 35.546875 2.25 31.03125 0.53125 \nQ 26.515625 -1.171875 21.34375 -1.171875 \nQ 12.796875 -1.171875 8.203125 3 \nQ 3.609375 7.171875 3.609375 13.671875 \nQ 3.609375 17.484375 5.34375 20.625 \nQ 7.078125 23.78125 9.890625 25.6875 \nQ 12.703125 27.59375 16.21875 28.5625 \nQ 18.796875 29.25 24.03125 29.890625 \nQ 34.671875 31.15625 39.703125 32.90625 \nQ 39.75 34.71875 39.75 35.203125 \nQ 39.75 40.578125 37.25 42.78125 \nQ 33.890625 45.75 27.25 45.75 \nQ 21.046875 45.75 18.09375 43.578125 \nQ 15.140625 41.40625 13.71875 35.890625 \nL 5.125 37.0625 \nQ 6.296875 42.578125 8.984375 45.96875 \nQ 11.671875 49.359375 16.75 51.1875 \nQ 21.828125 53.03125 28.515625 53.03125 \nQ 35.15625 53.03125 39.296875 51.46875 \nQ 43.453125 49.90625 45.40625 47.53125 \nQ 47.359375 45.171875 48.140625 41.546875 \nQ 48.578125 39.3125 48.578125 33.453125 \nL 48.578125 21.734375 \nQ 48.578125 9.46875 49.140625 6.21875 \nQ 49.703125 2.984375 51.375 0 \nL 42.1875 0 \nQ 40.828125 2.734375 40.4375 6.390625 \nz\nM 39.703125 26.03125 \nQ 34.90625 24.078125 25.34375 22.703125 \nQ 19.921875 21.921875 17.671875 20.9375 \nQ 15.4375 19.96875 14.203125 18.09375 \nQ 12.984375 16.21875 12.984375 13.921875 \nQ 12.984375 10.40625 15.640625 8.0625 \nQ 18.3125 5.71875 23.4375 5.71875 \nQ 28.515625 5.71875 32.46875 7.9375 \nQ 36.421875 10.15625 38.28125 14.015625 \nQ 39.703125 17 39.703125 22.796875 \nz\n\" id=\"ArialMT-97\"/>\n <path d=\"M 21 0 \nL 1.265625 51.859375 \nL 10.546875 51.859375 \nL 21.6875 20.796875 \nQ 23.484375 15.765625 25 10.359375 \nQ 26.171875 14.453125 28.265625 20.21875 \nL 39.796875 51.859375 \nL 48.828125 51.859375 \nL 29.203125 0 \nz\n\" id=\"ArialMT-118\"/>\n <path d=\"M 6.5 0 \nL 6.5 51.859375 \nL 14.40625 51.859375 \nL 14.40625 44 \nQ 17.4375 49.515625 20 51.265625 \nQ 22.5625 53.03125 25.640625 53.03125 \nQ 30.078125 53.03125 34.671875 50.203125 \nL 31.640625 42.046875 \nQ 28.421875 43.953125 25.203125 43.953125 \nQ 22.3125 43.953125 20.015625 42.21875 \nQ 17.71875 40.484375 16.75 37.40625 \nQ 15.28125 32.71875 15.28125 27.15625 \nL 15.28125 0 \nz\n\" id=\"ArialMT-114\"/>\n <path d=\"M 4.984375 -4.296875 \nL 13.53125 -5.5625 \nQ 14.0625 -9.515625 16.5 -11.328125 \nQ 19.78125 -13.765625 25.4375 -13.765625 \nQ 31.546875 -13.765625 34.859375 -11.328125 \nQ 38.1875 -8.890625 39.359375 -4.5 \nQ 40.046875 -1.8125 39.984375 6.78125 \nQ 34.234375 0 25.640625 0 \nQ 14.9375 0 9.078125 7.71875 \nQ 3.21875 15.4375 3.21875 26.21875 \nQ 3.21875 33.640625 5.90625 39.90625 \nQ 8.59375 46.1875 13.6875 49.609375 \nQ 18.796875 53.03125 25.6875 53.03125 \nQ 34.859375 53.03125 40.828125 45.609375 \nL 40.828125 51.859375 \nL 48.921875 51.859375 \nL 48.921875 7.03125 \nQ 48.921875 -5.078125 46.453125 -10.125 \nQ 44 -15.1875 38.640625 -18.109375 \nQ 33.296875 -21.046875 25.484375 -21.046875 \nQ 16.21875 -21.046875 10.5 -16.875 \nQ 4.78125 -12.703125 4.984375 -4.296875 \nz\nM 12.25 26.859375 \nQ 12.25 16.65625 16.296875 11.96875 \nQ 20.359375 7.28125 26.46875 7.28125 \nQ 32.515625 7.28125 36.609375 11.9375 \nQ 40.71875 16.609375 40.71875 26.5625 \nQ 40.71875 36.078125 36.5 40.90625 \nQ 32.28125 45.75 26.3125 45.75 \nQ 20.453125 45.75 16.34375 40.984375 \nQ 12.25 36.234375 12.25 26.859375 \nz\n\" id=\"ArialMT-103\"/>\n <path id=\"ArialMT-32\"/>\n <path d=\"M 6.390625 0 \nL 6.390625 71.578125 \nL 15.1875 71.578125 \nL 15.1875 0 \nz\n\" id=\"ArialMT-108\"/>\n <path d=\"M 6.59375 0 \nL 6.59375 51.859375 \nL 14.5 51.859375 \nL 14.5 44.484375 \nQ 20.21875 53.03125 31 53.03125 \nQ 35.6875 53.03125 39.625 51.34375 \nQ 43.5625 49.65625 45.515625 46.921875 \nQ 47.46875 44.1875 48.25 40.4375 \nQ 48.734375 37.984375 48.734375 31.890625 \nL 48.734375 0 \nL 39.9375 0 \nL 39.9375 31.546875 \nQ 39.9375 36.921875 38.90625 39.578125 \nQ 37.890625 42.234375 35.28125 43.8125 \nQ 32.671875 45.40625 29.15625 45.40625 \nQ 23.53125 45.40625 19.453125 41.84375 \nQ 15.375 38.28125 15.375 28.328125 \nL 15.375 0 \nz\n\" id=\"ArialMT-110\"/>\n <path d=\"M 40.4375 19 \nL 49.078125 17.875 \nQ 47.65625 8.9375 41.8125 3.875 \nQ 35.984375 -1.171875 27.484375 -1.171875 \nQ 16.84375 -1.171875 10.375 5.78125 \nQ 3.90625 12.75 3.90625 25.734375 \nQ 3.90625 34.125 6.6875 40.421875 \nQ 9.46875 46.734375 15.15625 49.875 \nQ 20.84375 53.03125 27.546875 53.03125 \nQ 35.984375 53.03125 41.359375 48.75 \nQ 46.734375 44.484375 48.25 36.625 \nL 39.703125 35.296875 \nQ 38.484375 40.53125 35.375 43.15625 \nQ 32.28125 45.796875 27.875 45.796875 \nQ 21.234375 45.796875 17.078125 41.03125 \nQ 12.9375 36.28125 12.9375 25.984375 \nQ 12.9375 15.53125 16.9375 10.796875 \nQ 20.953125 6.0625 27.390625 6.0625 \nQ 32.5625 6.0625 36.03125 9.234375 \nQ 39.5 12.40625 40.4375 19 \nz\n\" id=\"ArialMT-99\"/>\n <path d=\"M 40.578125 0 \nL 40.578125 7.625 \nQ 34.515625 -1.171875 24.125 -1.171875 \nQ 19.53125 -1.171875 15.546875 0.578125 \nQ 11.578125 2.34375 9.640625 5 \nQ 7.71875 7.671875 6.9375 11.53125 \nQ 6.390625 14.109375 6.390625 19.734375 \nL 6.390625 51.859375 \nL 15.1875 51.859375 \nL 15.1875 23.09375 \nQ 15.1875 16.21875 15.71875 13.8125 \nQ 16.546875 10.359375 19.234375 8.375 \nQ 21.921875 6.390625 25.875 6.390625 \nQ 29.828125 6.390625 33.296875 8.421875 \nQ 36.765625 10.453125 38.203125 13.9375 \nQ 39.65625 17.4375 39.65625 24.078125 \nL 39.65625 51.859375 \nL 48.4375 51.859375 \nL 48.4375 0 \nz\n\" id=\"ArialMT-117\"/>\n <path d=\"M 8.6875 0 \nL 8.6875 45.015625 \nL 0.921875 45.015625 \nL 0.921875 51.859375 \nL 8.6875 51.859375 \nL 8.6875 57.375 \nQ 8.6875 62.59375 9.625 65.140625 \nQ 10.890625 68.5625 14.078125 70.671875 \nQ 17.28125 72.796875 23.046875 72.796875 \nQ 26.765625 72.796875 31.25 71.921875 \nL 29.9375 64.265625 \nQ 27.203125 64.75 24.75 64.75 \nQ 20.75 64.75 19.09375 63.03125 \nQ 17.4375 61.328125 17.4375 56.640625 \nL 17.4375 51.859375 \nL 27.546875 51.859375 \nL 27.546875 45.015625 \nL 17.4375 45.015625 \nL 17.4375 0 \nz\n\" id=\"ArialMT-102\"/>\n <path d=\"M 8.015625 0 \nL 8.015625 71.578125 \nL 17.484375 71.578125 \nL 17.484375 42.1875 \nL 54.6875 42.1875 \nL 54.6875 71.578125 \nL 64.15625 71.578125 \nL 64.15625 0 \nL 54.6875 0 \nL 54.6875 33.734375 \nL 17.484375 33.734375 \nL 17.484375 0 \nz\n\" id=\"ArialMT-72\"/>\n <path d=\"M 3.171875 21.484375 \nL 3.171875 30.328125 \nL 30.171875 30.328125 \nL 30.171875 21.484375 \nz\n\" id=\"ArialMT-45\"/>\n <path d=\"M 7.71875 0 \nL 7.71875 71.578125 \nL 32.375 71.578125 \nQ 40.71875 71.578125 45.125 70.5625 \nQ 51.265625 69.140625 55.609375 65.4375 \nQ 61.28125 60.640625 64.078125 53.1875 \nQ 66.890625 45.75 66.890625 36.1875 \nQ 66.890625 28.03125 64.984375 21.734375 \nQ 63.09375 15.4375 60.109375 11.296875 \nQ 57.125 7.171875 53.578125 4.796875 \nQ 50.046875 2.4375 45.046875 1.21875 \nQ 40.046875 0 33.546875 0 \nz\nM 17.1875 8.453125 \nL 32.46875 8.453125 \nQ 39.546875 8.453125 43.578125 9.765625 \nQ 47.609375 11.078125 50 13.484375 \nQ 53.375 16.84375 55.25 22.53125 \nQ 57.125 28.21875 57.125 36.328125 \nQ 57.125 47.5625 53.4375 53.59375 \nQ 49.75 59.625 44.484375 61.671875 \nQ 40.671875 63.140625 32.234375 63.140625 \nL 17.1875 63.140625 \nz\n\" id=\"ArialMT-68\"/>\n <path d=\"M 61.96875 7.671875 \nQ 68.5625 3.125 74.125 1.03125 \nL 71.34375 -5.5625 \nQ 63.625 -2.78125 55.953125 3.21875 \nQ 48 -1.21875 38.375 -1.21875 \nQ 28.65625 -1.21875 20.75 3.46875 \nQ 12.84375 8.15625 8.5625 16.640625 \nQ 4.296875 25.140625 4.296875 35.796875 \nQ 4.296875 46.390625 8.59375 55.078125 \nQ 12.890625 63.765625 20.828125 68.3125 \nQ 28.765625 72.859375 38.578125 72.859375 \nQ 48.484375 72.859375 56.4375 68.140625 \nQ 64.40625 63.421875 68.578125 54.953125 \nQ 72.75 46.484375 72.75 35.84375 \nQ 72.75 27 70.0625 19.9375 \nQ 67.390625 12.890625 61.96875 7.671875 \nz\nM 41.109375 19.78125 \nQ 49.3125 17.484375 54.640625 12.9375 \nQ 62.984375 20.5625 62.984375 35.84375 \nQ 62.984375 44.53125 60.03125 51.015625 \nQ 57.078125 57.515625 51.390625 61.109375 \nQ 45.703125 64.703125 38.625 64.703125 \nQ 28.03125 64.703125 21.046875 57.453125 \nQ 14.0625 50.203125 14.0625 35.796875 \nQ 14.0625 21.828125 20.96875 14.359375 \nQ 27.875 6.890625 38.625 6.890625 \nQ 43.703125 6.890625 48.1875 8.796875 \nQ 43.75 11.671875 38.8125 12.890625 \nz\n\" id=\"ArialMT-81\"/>\n <path d=\"M 7.625 0 \nL 7.625 71.578125 \nL 17.328125 71.578125 \nL 54.9375 15.375 \nL 54.9375 71.578125 \nL 64.015625 71.578125 \nL 64.015625 0 \nL 54.296875 0 \nL 16.703125 56.25 \nL 16.703125 0 \nz\n\" id=\"ArialMT-78\"/>\n </defs>\n <use xlink:href=\"#ArialMT-97\"/>\n <use x=\"55.615234\" xlink:href=\"#ArialMT-118\"/>\n <use x=\"105.615234\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"161.230469\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"194.53125\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"250.146484\" xlink:href=\"#ArialMT-103\"/>\n <use x=\"305.761719\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"361.376953\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"389.160156\" xlink:href=\"#ArialMT-108\"/>\n <use x=\"411.376953\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"466.992188\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"522.607422\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"555.908203\" xlink:href=\"#ArialMT-110\"/>\n <use x=\"611.523438\" xlink:href=\"#ArialMT-105\"/>\n <use x=\"633.740234\" xlink:href=\"#ArialMT-110\"/>\n <use x=\"689.355469\" xlink:href=\"#ArialMT-103\"/>\n <use x=\"744.970703\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"772.753906\" xlink:href=\"#ArialMT-99\"/>\n <use x=\"822.753906\" xlink:href=\"#ArialMT-117\"/>\n <use x=\"878.369141\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"911.669922\" xlink:href=\"#ArialMT-118\"/>\n <use x=\"961.669922\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"1017.285156\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"1045.068359\" xlink:href=\"#ArialMT-111\"/>\n <use x=\"1100.683594\" xlink:href=\"#ArialMT-102\"/>\n <use x=\"1128.466797\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"1156.25\" xlink:href=\"#ArialMT-72\"/>\n <use x=\"1228.466797\" xlink:href=\"#ArialMT-45\"/>\n <use x=\"1261.767578\" xlink:href=\"#ArialMT-68\"/>\n <use x=\"1333.984375\" xlink:href=\"#ArialMT-81\"/>\n <use x=\"1411.767578\" xlink:href=\"#ArialMT-78\"/>\n </g>\n </g>\n <g id=\"legend_1\">\n <g id=\"patch_7\">\n <path d=\"M 124.632109 147.937422 \nL 280.270078 147.937422 \nQ 282.470078 147.937422 282.470078 145.737422 \nL 282.470078 115.588828 \nQ 282.470078 113.388828 280.270078 113.388828 \nL 124.632109 113.388828 \nQ 122.432109 113.388828 122.432109 115.588828 \nL 122.432109 145.737422 \nQ 122.432109 147.937422 124.632109 147.937422 \nz\n\" style=\"fill:#eaeaf2;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n </g>\n <g id=\"line2d_19\">\n <path d=\"M 126.832109 121.812422 \nL 148.832109 121.812422 \n\" style=\"fill:none;stroke:#4c72b0;stroke-linecap:round;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_20\"/>\n <g id=\"text_19\">\n <!-- rewards -->\n <g style=\"fill:#262626;\" transform=\"translate(157.632109 125.662422)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 16.15625 0 \nL 0.296875 51.859375 \nL 9.375 51.859375 \nL 17.625 21.921875 \nL 20.703125 10.796875 \nQ 20.90625 11.625 23.390625 21.484375 \nL 31.640625 51.859375 \nL 40.671875 51.859375 \nL 48.4375 21.78125 \nL 51.03125 11.859375 \nL 54 21.875 \nL 62.890625 51.859375 \nL 71.4375 51.859375 \nL 55.21875 0 \nL 46.09375 0 \nL 37.84375 31.0625 \nL 35.84375 39.890625 \nL 25.34375 0 \nz\n\" id=\"ArialMT-119\"/>\n </defs>\n <use xlink:href=\"#ArialMT-114\"/>\n <use x=\"33.300781\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"88.916016\" xlink:href=\"#ArialMT-119\"/>\n <use x=\"161.132812\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"216.748047\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"250.048828\" xlink:href=\"#ArialMT-100\"/>\n <use x=\"305.664062\" xlink:href=\"#ArialMT-115\"/>\n </g>\n </g>\n <g id=\"line2d_21\">\n <path d=\"M 126.832109 137.372266 \nL 148.832109 137.372266 \n\" style=\"fill:none;stroke:#dd8452;stroke-linecap:round;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_22\"/>\n <g id=\"text_20\">\n <!-- moving average rewards -->\n <g style=\"fill:#262626;\" transform=\"translate(157.632109 141.222266)scale(0.11 -0.11)\">\n <defs>\n <path d=\"M 6.59375 0 \nL 6.59375 51.859375 \nL 14.453125 51.859375 \nL 14.453125 44.578125 \nQ 16.890625 48.390625 20.9375 50.703125 \nQ 25 53.03125 30.171875 53.03125 \nQ 35.9375 53.03125 39.625 50.640625 \nQ 43.3125 48.25 44.828125 43.953125 \nQ 50.984375 53.03125 60.84375 53.03125 \nQ 68.5625 53.03125 72.703125 48.75 \nQ 76.859375 44.484375 76.859375 35.59375 \nL 76.859375 0 \nL 68.109375 0 \nL 68.109375 32.671875 \nQ 68.109375 37.9375 67.25 40.25 \nQ 66.40625 42.578125 64.15625 43.984375 \nQ 61.921875 45.40625 58.890625 45.40625 \nQ 53.421875 45.40625 49.796875 41.765625 \nQ 46.1875 38.140625 46.1875 30.125 \nL 46.1875 0 \nL 37.40625 0 \nL 37.40625 33.6875 \nQ 37.40625 39.546875 35.25 42.46875 \nQ 33.109375 45.40625 28.21875 45.40625 \nQ 24.515625 45.40625 21.359375 43.453125 \nQ 18.21875 41.5 16.796875 37.734375 \nQ 15.375 33.984375 15.375 26.90625 \nL 15.375 0 \nz\n\" id=\"ArialMT-109\"/>\n </defs>\n <use xlink:href=\"#ArialMT-109\"/>\n <use x=\"83.300781\" xlink:href=\"#ArialMT-111\"/>\n <use x=\"138.916016\" xlink:href=\"#ArialMT-118\"/>\n <use x=\"188.916016\" xlink:href=\"#ArialMT-105\"/>\n <use x=\"211.132812\" xlink:href=\"#ArialMT-110\"/>\n <use x=\"266.748047\" xlink:href=\"#ArialMT-103\"/>\n <use x=\"322.363281\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"350.146484\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"405.761719\" xlink:href=\"#ArialMT-118\"/>\n <use x=\"455.761719\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"511.376953\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"544.677734\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"600.292969\" xlink:href=\"#ArialMT-103\"/>\n <use x=\"655.908203\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"711.523438\" xlink:href=\"#ArialMT-32\"/>\n <use x=\"739.306641\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"772.607422\" xlink:href=\"#ArialMT-101\"/>\n <use x=\"828.222656\" xlink:href=\"#ArialMT-119\"/>\n <use x=\"900.439453\" xlink:href=\"#ArialMT-97\"/>\n <use x=\"956.054688\" xlink:href=\"#ArialMT-114\"/>\n <use x=\"989.355469\" xlink:href=\"#ArialMT-100\"/>\n <use x=\"1044.970703\" xlink:href=\"#ArialMT-115\"/>\n </g>\n </g>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p4c532b25cd\">\n <rect height=\"217.44\" width=\"334.8\" x=\"35.051094\" y=\"21.943125\"/>\n </clipPath>\n </defs>\n</svg>\n",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEXCAYAAABI/TQXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACOjUlEQVR4nO2dd5jc1NWHX0nTt3qbe8HdBlwwxaaZ5oIL1XRwgBBIQiCQfHyAMYQ4MSHAB4EQICFAEkqAmBIghB4IYKoBG4Mxxr1ur7NTpfv9oZFGMzuzO9ub3ufx41mNpLlX5ejod889RxJCCGxsbGxs+iRydzfAxsbGxqbzsI28jY2NTR/GNvI2NjY2fRjbyNvY2Nj0YWwjb2NjY9OHsY28jY2NTR/GNvI23crvf/97VqxY0SW/9YMf/IDvvvuuS36ru7n//vs55phjuP766xOW79q1i+nTpzdZv7nzcN1113HUUUdx8sknc/LJJ7NgwQJ+/vOfU15enrDe008/zWmnncaiRYtYuHAh11xzDbt3707Yz/z582lsbEzYbvr06ezatautXbVpAUd3N8DGpqt48MEHu7sJXcaqVau44447OPjggztkfxdeeCHf//73ARBC8Mc//pFLLrmEZ599FkVRuP3221m3bh333XcfgwYNQtM0XnjhBc466yz+8Y9/MHjwYAB2797NypUrWblyZYe0y6ZlbCPfB9A0jVtuuYW1a9fi9/sRQvDrX/+a8ePHM3v2bF599VWKi4sBOPPMM7n88suZNWsWd9xxB5988gmqqjJ58mSWL19OdnY2xx13HFOmTGHjxo387Gc/w+Fw8Mc//pFwOExVVRWnnHIKV111FQB/+tOfWLVqFVlZWRx88MG8+eabvPXWW4TD4bT7T0dpaSkrVqxg7969RCIRFi5cyA9/+EMAHnjgAd544w1CoRCBQIBrr72WOXPm8Pvf/54vvviCsrIyJkyYwMiRI9m9ezfl5eXs3r2bgoIC7rrrLgYOHMhxxx3H3XffTWNjI3fddRfDhw9n06ZNhMNhbrrpJmbOnElVVRXXX389O3bsID8/n+LiYsaNG8cVV1yR0Fa/38+vf/1rPvvsMxRF4YQTTuDqq6/m+uuvZ9y4caZBvO6668y/rcf1iiuu4P777+fFF18EoK6ujuOPP5433niDYDCY9jhY2bdvHzfffDO7d+9GCMEpp5zCJZdcwlVXXUVpaSk33HADP/3pT1mwYEG7rzErkiTxwx/+kOeee47333+fiRMn8vjjj/Paa69RUlICgCzLnHLKKaxfv54//vGP3HzzzQAsXbqUf/7zn7z66qvMmzevQ9tlkxpbrukDrF27lrKyMp566ilefvllTj31VB588EFycnKYM2cOL7zwAgCbN2+mvLyco446ij/96U8oisKzzz7LCy+8QElJCXfccYe5z3HjxvHvf/+bE044gYcffphbb72VZ599lqeeeoo//elPVFVV8e677/Lss8+yatUqnn32Wfx+v7l9S/tPxTXXXMPpp59u7nP16tW8/PLL7N69m9WrV/PYY4/x4osvcvXVV3PPPfeY2+3evZvnnnvO3P+nn37K3XffzSuvvEJubi5PPfVUk99at24dF198Mc8//zxLlizh3nvvBeDXv/41Y8eO5d///jd33303n332Wcq23nPPPYRCIV5++WWef/55PvvsMz7++OMWz5VxXE888UT8fj9ffvklAC+99BKzZ88mLy8v7XFI5n/+53847LDDePHFF/n73//OCy+8wL/+9S9+97vfmcc7lYEPBoOm9GL8e/LJJ1tsezITJkzg22+/Ze3atQwfPtw08FaOOOKIhGNYUFDArbfeyk033cTevXtb/Zs2rcf25PsA06dPJy8vjyeffJKdO3fy0UcfkZWVBcAZZ5zBL3/5S77//e/zzDPPcNpppyHLMm+//Tb19fWsXr0agEgkQmFhoblP4zVfkiQeeOAB3n77bV566SU2b96MEIJAIMA777zD/Pnzyc3NBeC8887jww8/BGhx/8k0NjbyySefUFtby913320u++abb1iwYAG//e1vefHFF9m+fbv5xmIwbdo0HI74pXzooYeabwyTJ0+mtra2ye8NGTKESZMmmes899xzALzzzjvm55KSEubPn5+yvatXr+b6669HURQUReGxxx4DMLdNh/W4LlmyhOeee44DDzyQZ599lmuuuabF42A9Xp999hkPP/wwADk5OZx22mn897//ZeHChc22wePx8M9//jNh2e9//3uqq6ub3S4ZSZLwer0trqdpWsLfRx55JKeeeirXXHMNf/vb31r1mzatxzbyfYC3336blStXctFFF3H88cczevRo03s/+OCDiUajrFu3jpdeesn02DRNY9myZcyePRvQ5YdQKGTu0+fzAboxOfXUUznhhBM4+OCDOf3003njjTcQQuBwOLCmPlIUxfzc0v6T0TQNIQRPPvmkaTiqqqpwu9189dVX/PjHP+bCCy/kiCOO4JBDDuGXv/xlk7YaeDwe87MkSaRKz5RuneQ+yXLql12Hw4EkSebfe/fuxePxNPm9SCSSsJ21raeffjqnnHIKZ5xxBvX19Rx22GE0NDSkPQ6pjlfysmg0mrK9mVJaWsqll15q/v2nP/0p5XpCCL766ivOP/98Ro4cyc6dOykrKzO9+dLSUgYOHMiHH37ItGnTmmz/s5/9jLPOOosHHnigXe21aRlbrukDvP/++xx77LGce+65HHjggbzxxhuoqmp+f8YZZ/CrX/2KCRMmMGTIEED3ph5//HHC4TCapnHjjTdy5513Ntn39u3baWho4KqrruK4447j448/NreZPXs2r732GvX19YA+2GeQ6f4NsrOzmTZtGo888giga9TnnHMOb775Jp988gkHHHAAF110EYceeihvvvlmQv86ktmzZ5v9qK6u5o033kgw5gazZs3iueeeQ9M0wuEwV155JZ988gkDBgxg/fr1gG6cP/3007S/NXDgQKZOncpNN93EkiVLgOaPg5Xs7GymTp3K448/DkB9fT3PP/88hx9+eLv6P3DgQP75z3+a/wYOHNhkHVVV+cMf/sCAAQM45JBDKCkp4YILLuDnP/85paWlVFdX88Mf/pDLL7+cf/3rX1x22WVN9uFyufi///s/Hn74YYLBYLvabNM8tpHvA5x99tl88sknLF68mLPOOovhw4eza9cu8zX5lFNOYcOGDZxxxhnmNj/+8Y8ZOnQop556KgsWLEAIwXXXXddk3xMmTOCYY47hxBNP5NRTT+Wtt95i7NixbN++nVmzZnHmmWdy1llncdppp1FfX296n5nu38odd9zB2rVrWbx4MWeccQaLFi3ipJNOYtGiRVRXV7NgwQJOO+00fD4ftbW1NDQ0dOBR1Ln++uvZsmULixcv5sorr2TIkCEJXr/BT37yE5xOJyeffDKnnHIKs2fPZu7cuVxwwQWUl5czb948rrnmGg499NBmf++MM85gw4YNnHrqqS0eh2TuuOMOPvjgAxYvXsySJUuYO3cup512WvsPQgr+8pe/mH095ZRT2LNnT4KX//Of/5zFixfzox/9iPPPP988N0VFRbz22msp9zl69GiuvfbaJnKOTcci2amGbdrKl19+yeeff87SpUsBeOSRR1i7di2/+93vurdh7eDxxx9n8uTJTJ8+nXA4zLnnnssVV1xhyk42rSMYDPLhhx9yzDHHdHdT+i22kbdpMw0NDSxbtowtW7YgSRKDBw/mV7/6VcpX/N7CRx99xG9/+1s0TSMSiTB//vwm4ZM2Nr0J28jb2NjY9GFsTd7GxsamD2MbeRsbG5s+jG3kbWxsbPowtpG3sbGx6cP0uBmv1dV+NK31Y8GFhdlUVnZ83HR3YPelZ2L3pWfS3/siyxIDBmSl/b7HGXlNE20y8sa2fQW7Lz0Tuy89E7sv6bHlGhsbG5s+jG3kbWxsbPowtpG3sbGx6cNkZOTvvfdeFi5cyMKFC7ntttsAPZ/24sWLmTt3LnfddZe57oYNGzj99NOZN28eN9xwQ7tTn9rY2NjYtJ0Wjfzq1at57733eO6553j++ef56quveOmll1i2bBn33XcfL7/8MuvXr+edd94B9Oo+N954I6+++ipCCJ5++ulO74SNjY2NTWpaNPLFxcVcd911uFwunE4nY8aMYdu2bYwcOZLhw4fjcDhYvHgxr7zyCrt37yYYDJpFAk477TReeeWVzu5DtyKEQGtl+h8tto2RNij57+T1kv8lb5fun7V9mfxr7fottQ9i0VIduM907U53LtL1pzWY+9DS99MmNR19nFKezxTXWEvbZXoPZXJPZrqvTO6/zqDFEMpx48aZn7dt28bLL7/MBRdcYBaGBr1MWmlpKWVlZQnLi4uLKS0t7eAmdw+aJrjktv9wzvHjmHPIcG574jMOP2Aw767bw6ZdtZx13FjmHTqixf08+eYmXvtkJwDTxxUxalAOz727FYCJI/L533MPAuDddXv4y8vfkOrU52e7uGjBJO5ZtQ41TbiVyyFzyaLJ/PlfXxOOtJyvW5LgRycfwDPvbKa0OtDi+s0xc/+BXLp4f5797xZeWr0tw60EXilCjhQgVw6QLQfxSmE8UgSPFMGpSEw85DBefH8rbhHCK4fxSWEUWeKoM87Bl53D8j9/SCSq8b/nHMTYYXmEIirXPfABtf5wYl+BSxZPZtb+gzJq2X3Pr2fNxvImyw+bPJDLTto/w/71P77aWsX/PfUFWR4Ht//4cDyu9OamtiHEr//2KT87axqDC/WY72A4yi8f+YTvL5zM2GF5RFWN6//4IZV1LRcZWXLMGD78ah/DS3L4weLJPPji13z4ddwWHT11MB6Xw7wX0zFqUA4nHDyM/3y2m+MPHsaDL35Nsj3O9Tm5eOEkfv/Ml2nvx+aQ0fApGleeexjFxTmt3r4lMo6T37RpE5dddhnXXnstDoeDrVu3Jnyfrsxaqqo6zVFYmN2q9a10xgEyqG/UDcUL72/l3AWT2bKnjgmjCtlVrtcarWmMZPT7e6oaKSnwkeNzsqvCj8fjZECOm8J8L/uqA+Y+6gJRJAnOmTsxYfvNu2r46Kt97KkOoGqC044Zi8eddBqF4Kk3vuWvr3xDNKpx9pwJyHLz5+GJV79hT3WA0uoAB00oYeKogmbXl7Qo3mA5vsY9eAMVuENVuMPVKP4KKvbkkSffwN6qRgrzPMybOcpslytciy+wF0+wAk+wAm+wAneoGmekHlmkrvYkkNAEKGvX8sMUl0fovWpqZ12GHPYzTKljX1UDs6YPY2+Fn1p/mMOnDGbU4LyEvtYFoxmdr+r6IJ9/W86MiSVMGBk/Jv/9fBdlNYFOveY6m85uu//bCv3/YBS3101xgS/tupWNESrrQgTVeLv2VfoprQ5QF1IpLs6hvjFMZV2wyblI5oX/bqaiPsSucj+7yv0su/gwdpY3MGpwLodPGcLba3ayrzqAz+2kKN/L3MNGptzP+s0VfLm5gp0VjWzeU8fUujCSJHHO3AnmOrtK6/nvF7v5ekctqiY44/hxOB1K050JgStcQ1bjXryBfbhD1XhCVbhCNbjDtUho5HtHA8M6/LxkZOTXrFnDlVdeybJly1i4cCEff/wxFRUV5vdGbceBAwcmLC8vL09Zwb05Kisb2jQZoLg4h/Ly+lZvlynlNbp363YplJfXowmB3x+CmK/d2BjO6PfrGkIMHuCleICX97/cS3VtgKI8D8OKsiit9FNeXk9xcQ6NjWEUReaE6UMStvc6JD76ah+VVY0AHDttMFkeZ5PfWbepnPVbq5g4Ip+5M4a22K5n/rOJPWV6+w8YNYBjkn5XRMOo+75F3bOB6O4NaJU7QIsNqksKUk4hcn4xOxzFDKj+ml1/u4mAdiaTCiMc7fgSdc83qGVbEIF4UW3Jk4OUNxB50GRkXz6SNw/Jl6v/781BcvmQXD40h4tr7/kPJepeigpz+d5JByG5smjQnPzlwX9wIe8x4N/LuGWA/pDwf/IB+4b9D7vD+QDMGFvE9PH6G6YQGm+/8SGBen9G5+s/n+9GE3Dy4aOYvv9gc5uNWyvZV9XYqddcZ9LZ9wtAbV38jbC8oh6pmZKN1bHruaYmfkwrqhvN/ZSX11Ndr9cI3n9k4vWZ3Jf/fLqDhoZ4PeHy8nrq/GFmjC/mhOlD2LClgvKaIEITFOW6m9xjBpKmse67CrbuqgGgtLIBt1NJWH/jjmr++8VuNu2oRpEl5h08DDnm8GpVO1F3byC6ZwNq6SYIxYvPS758pJwi5IETkXOKkHKKiOaNNNvbGmRZatY5btHI7927l8svv5y77rqLWbNmATB16lS2bt3K9u3bGTZsGC+99BKnn346Q4cOxe12s2bNGmbMmMHzzz/P0Ucf3aoG91Qag7pB88ZeOTVN1+CM17NMNbVgSMVb6MDndhAIqTQEohTmupEkEl4DhdBlhWScDn0YpTGkt8eppB5WOXhiCeu3VnHIxMwesh6XQk3sJvK4dE9EaCrq7q+JbFpNdNtnEA2BpKCUjMZ5wByUopHIRSOQcwciyfo25Wv38PfX3uPnyr9ZKv6KNxgi9AFIuQNRhk5GKRmDUjwKOW8QkieztzYFGDm8hM83yZw4cgRKwXAAsoVgXXQ/Vo+azKCqNXxTDnJWPker7xN8834aZ/wUAK9LQS3fRmTjf4lu+4xr82r4tqoBmJD+R2N89m05Awt8DC1OnDYuy1Kn6qh9AWFx1lry2zRT17ZsH/tsOH0RVZcdjXsgHQ5FJqomjtU0BqP4Ys6Q0yETVTUiUQmPz5V2Pzk+ff3dFbpxrm+M4HYm/nZuliu2TgM5PieiZg+h7z4ksvkjRF0ZoF/7zv1mIBeNQikcgVwwDMnZtKRkZ9GikX/ooYcIhULceuut5rKzzz6bW2+9lSuuuIJQKMTs2bOZP38+oNedXL58OX6/n8mTJ5ul4Xo7/mAEiBtAfbBEN/ZAE50uHYFwFI/bYV5wVXVBhpdkNZG7BKmtvGHUAzEj70hzwR82eSC1/jCzDmhZdxZCY4KrlD0NRQB45SjhtS8T/vI1RGMNuHw4x87EMeoglEHjkVzetPsqzPOwUy2idtxiyr75nFDJZGaecAJybnHabTJhwogBfL6pggkj8s1lsiSR43OyN5rH19IR1OdEGFzo47ldTs6vfpnsr//JdJfCwI/+Q2PtTlCcOEZMpX7LWrzhqox+t6I2yMiB2U1kR1mW+tRU+s7AenhaOlbGtZ88aG/9PxrN3MgbDwTQ5SJVE2R5dHPnVGQiUQ1FkZrdV47XaW4PumTrdsalGK2hkuyvXubKnC/5PDyKw9y7aPzHHpAklCGTcUxbiGPYAcjZhc22t7Np0cgvX76c5cuXp/zuhRdeaLJs4sSJZrX7voThyXvcjvhouqalvDibIxBS8boUfDEdvTEUxed2pvHkm1p546IMhKIosoScZszD7VRYfPioFtsT3bWe0EdPcx47+Eodzgb3IEZ9uIpQpBFlyCScR5yPY8RUJKWpJJSKojzdQ9leMIsnGguZO2hkuw08wOEHDCIQijI5aawgN8tFnT9MWXWAUYNzKMn38uJXRXzvyBPI//oNLswGTRuI+4gLcI6dieTOYtv9P8cdzeyVOBCMmOfKiizRpkG2/oRqKdDd0luPluKN2PhsHOeIYeTTvL0aOBXJfCAA7Il54j7DyDv0h4ASbcHIZ1m9fEGdP0KWx4EI+QmteZ7IV28BUKS4WJL1MfXk4J55Fo6xhyP78lLvtBvocQnKeiqGJ+91KfFXSy1+cWZi4yNRjaiq4XE78FoMh9fjIBxRde/dQir7bco1wWiLHk1ziGADwdWPEf3uQ6ScYjY6JrI/37C/cyeRvPFkH3UOSvF+rd5vQa4HCX0MIxhWU44XtIVsr5OTj2zantwsF9UNISpqgxw6uYSBBT4EUDt+IfUVjfx7s5OLzzsXV5bb3KZO+BgazSzTX2MomnCuDGQ5daCBTZzWePKGSdZSePLGcc5YrnHIBEJx/d8w8sa16HDonrxDkdI+MLTGGnI/+Qs35X1HqZpLkVLPPf7FHOqrxP/Uo4hgA86Js3FNX8TKv63H11DKsAn7c/GUA5ptW3dgG/kMsXryhoOianGznIk+Gwwbur5iehUAPrdu5BNuCiFSGnmHEtfkHS14NOmI7t1I8I0/IIJ+XDNOxTVtIauf/YrvdnvYow7gvNOXoBSmT13aHA5FJj/HbeqY1n52Brk+F19t1aWXknwfJQN0Kam0VmVn8RzWfrMVb9KDpl748EQrW9x3JKoSVUXKPsiS1KLO3N+xavLW26O2IcRjr3/LxQsmmQ/Q+BsxTbZp4slnINcEw/GB15SevGHkU+wrumcDwTfvRwoHiOJlrLMUBypXZL3EwHAdUslovAv+B6VIHyj1ZmWxrb6YSdldp7O3BtvIZ4ihyzkdsnlBWl9HM3HqAmHdu/C6HQkSgM/joM4fTvQMBaQS5a1yjcuZIlSrBcIb3ib03qNIucX4FvwPSqEe2+/xOHgtOEX/nMJzbQ2FuR52xiJ1fB3kyacjz/JKPbwkm/xs/e+q+iCBkIrLITd5GNYLH26tEaFFkeT0fTUe7CnlGluTbxGr42OVtrbsqWPNxnJOPGwko4fk6uvGbiUtYbA2UcIxjHy6cSgDpyITDFs8+cokI6/oA6/hFHJN+MvXCH34d+S8QXgXXcs9f91ENBTkVN+nHOr6jrXemRxx0g/MQAOIX4O5WekHcbsT28hnSGNMrhFafHaaqja9IJsjGBss9bgcTTz5Jpo8uu6bjDW6JsvbOgMa+uIlwh+vQhl+IN7jfojkjnvrXstElXYb+TwP3+3WQyU7Sq5Jh3FjSZJu5I3PNQ3htFJLg6THa4vGWqRmBsWMCCZvGk/e1uSbR01hsPXPTZel8uTjsmjrNHldronnzIp78vHoGoBQWDU/CyEIf/YC4TXP4Rg1A88xlyC5vGT7drIvqPGUfyavBqYwYcgYjpQTnatcX8828nYWygwxbnh9GrW+LKq20pM3jIY7Ua7xehyx6Jr4uun0XsMrFaLli91K6IuXCX+8CsfYmXjnXZVg4CEeNSRJ+mzZ9jAgJ65/d7pck6XfuIMKfMiyhCxL5Ga5qGkIEUhj5OvR+y4aa5rdd9yTb/qgsjX5lkmlrwOWwIWmD4GECLOkh0EkFmffslwjJXjyNQ36REYzusYyWcm4h8JrntMN/Pgj8ZzwYzOCzAij1JCp0rITomsMcm1Pvm9gyDWahjlAGk1x4TaHMRjkdTsSPOe4J28NoUw9W9h6gbf02moQ+fZ9wh8/jWPMTDzHJL5qGhhG3uNytHqWcjJWI9/at43WYszkHWwZQ8jPdlPboMtfKT15dE9e89fQnOBlPNhTR9fYcfItISzZNBJCI1MY+WSDbv2+tZp8qhmnEpjXgnV7p0Mm8s1/CX/2As4JR+M++kIkKf59TlIcfSqJNDf2IMhrJua+O7E9+Qwx5BojIRKQEKaVmSZvePIOZFkyDavP01SuQTQfXZP8OR1q+VaC7z6CMmQSnmMvSWngIS7ReN2t1/mTKehCT/7A0YVMGVPIuSfEcyzlZ7mojXnyvhT9aTA9+epm921OgEsl18h2CGVLJMg1KT6njqSJb29KOMabs2nkm79GHUr8xjEcDrdLMcONrW/ABYFtBN/9K8rQ/XEftTTBwEPckzdI5cnvP7qQGeOLGdhM2obuxDbyGWJ68rFJUADRVsQBQ1yT91qMO8Q8eZImQwmRcsardRCxJblGC9QReO33SN48PMf/qNlBRqsn314G5MSjDDpbk8/yOLnqjKkU5MZ/My/bTU1DKK0mH5B8aMgIf/NGPtCcJy9LWE6/TQpS6fDW5VrSm2uTbdJ58krzb5rW+2LsUD1e3Srf+MLlDJRryJKCjNv6D+S8gXjnXJ7y/pg6togjpwxGib0xul1NjfzQoiwuP+3AdoU0dyY9s1U9kEZTromnFk2cOt3yPozoGsNr9pnec8yTx+K9QEpX3noBN3dRCaERfPvPiGAd3rlXIntzm22bIR95UlzEraUg1+LJd7Jck4r8bBf1jRH8gUhKIy9JEg1KHlps2nk6TLkmzcCrrck3T7rompSRNCk8+eTY+dakNTAYMzRxUpIWrGe/L//IFbmvcU7WahQ1gOf4HyK5Unvh08YWcfGCSaZMk8qT7+nYRj4DjNwXQCyVgRFd0zpPPhCKIkuSObDpcztwOfUQP+NV0tiLSCPXyLJkehXNefKRL19D3bkO98yzzXje5vDEZA1vBxj5XJ8LJdbO9g7itoX8bDcCqGtMbeRlWaJByUer1VPPrtlYxt5Kf5P1GoPRtH2QJTuEsiVSDaxaP2spNPsEnT4prYEZQplBdI3B8KScQ6EP/o4SDZAjBznQtYuKkXPNMOLmMHLWuJy9z2T2vhZ3A5GoFh/914TpbSQnQWqJYEjF61bMgU1rvLxp0EV8f+leSo2LON3Aq1q1i9DH/8Ax6iCck49vsV0Ql2k6Qq6RZYn8bFfsDaV9g7htIS87PgCWzpOvUwag1ZUhhOCvr2zkP5/tbrJeYygaGy9p2gdZlhBknpiuP5LKYENquSZVdE2TOHlVw6HILV5TCW+7ToUZ44tZdPgooju/JLppNfX7ncCHoTGsDw+jbuQxGfXF3Ys9eTu6JgOS4301U65p/cCr1YhOGDHAjD4xLlzNIteku5idikwINa0nH/r4H+Bw4z76ooyNbFyT75iLeECOh1p/qOUVO4H87LhclNKTl6BOyYdAEBGoJapqqClOYGMw9ZsAxKN6NE0gt6AR91dSGXFo6qGDNbrGur3+v1WTz0T3tg68OhWZy087EKGp+P+xDDlvEIHxc/n7p2sBiZ85MzOBtpHv4yRHCSQnToJMQyijCdEr8w+LvyYattjcTRq5BuKaZOop2d+g7liL69AzkT2ZFx8wNfl2ToQymDRyAFUZVPDpDAYO8JLlcRAMq01e10GXWurkfAC0urJYCbem+9GTx6Ux8ub5sj35dFjlmFTGu7k8NdD0YRDN1Mhbw4xjBj/y7XuI2lI8c3+K0+XGmE2e6WCpy2Ub+T5NoiePRa7REpa3RCiipr1IDI/bmtUynX9oePDJ2qQQgtDHTyNlDcB1wAktN8iCocl3lCd/6tGjO2Q/bcHncfL7q9LXMZAkiVpZH5ATtaW6MUphrAMxuSYVhievaoKuH1ruHSQOvDYdv0rw5FNskyqtQSYTAK3rOBwyQo0Q/uwF5OLRKCOn4axsTPg+E0xPvoPuj67E1uQzIHmA1fQsEuSalq18VBVpB42SPXn9vzRyTRpPXt2xFq1sC64ZpyA5Wjcxw+tyUDLAy7Ditpdf7C3IEtRLuSDJaLWlsSLPTdfT00KnNvKKIa/ZYZRp0TQRDyiwDrImhUYa60Iaj99SNCQzuSYxzDiy4W1EQyXuQ05DkhLz1WQ6a9ww8m3JF9Xd2J58BiSHesU9i9SaYzpUTcOTzpPHiK6Jh5Klk2scaYx8+MtXkbIKcI4/ssW2JCPLErdeNqvV2/VGJFlCRUbKLkBrqEDTClI+pMMRNe1NLcmJYyg2TdGEwKFIhKMiyUOPf2+Qqi5DcsRN5pq8sY7AsfZZQhteRxkyCWWoXnS9tRMKIR5dk1wZqjdgG/kMSNbezRSorRx4jaoCxZP6IpGbePKpUw2DVa6Jr6BW7UTdswHXoWemndVqoyNLuoGRswvR6itj8xOarheOamlD5mQpPvBqkxpN099cw1EtTZ4ay7pJXrv1c2sHXp0O/dwc6/kaacManBOPxn3YWaYk2jYj3w80+YaGBs4++2weeOABNm/ezJ133ml+V1paytSpU/njH//IvffeyzPPPENurj755swzz+S8887r+JZ3IU0GXo1BIss6mcg1qqqZMe5NSNLk9ep/Lck18Qsu8uXroLhwTewbNXU7EzmWDE7KLkTbswGgScEWiHnyaabQy7Yn3yKaJvS3zlDzM1khneFPXJapJu8JVVIgN3Cidy3yiGm4j0rMR5M4oTAzo92bJ0NlZOTXrl3L8uXL2bZtGwCzZ89m9uzZAJSXl3POOedw/fXXA7B+/XruvPNOpk+f3jkt7gaSB15T3diZOHSqJlBa0OS1uI3POLpGC9QR+W41zvFHZVwcuz8jxXLBy9mFRBtrkNFSe/KR9J68ItuefEtoIv62mTKtQaqJTymyUKoWTT5dtJO5TTTMwI/uZlleEKek4T7opCb5aBxt0OSL873kZrl6bOqC5sioxU8//TS/+MUvKCkpafLdbbfdxtlnn82oUaMA3cg/+OCDLF68mBUrVhAKdU+sdEeS/KqZbBCUDNPORlUtQWKxIqeIrkln5R1Jck1002pQozhbGVHTX5GJRS/lFIEQ5Mv+JucvquoT4NJq8uZD2Tby6dA0DYccc0RaSlBmODfWh0HSeno1p+ZNVnTHF8iRRpySxs5oIY6SplFesmSZNe7IbI7DsdOH8ptLZ3bL5L72kpEnv3LlypTLt23bxscff2x+7/f7mTRpEtdeey1Dhw7luuuu47777uPqq6/OuEGFhW33RIuLM48Lbw1VjRHzs6zI5OV5E753OGQURW7x9wUS2T53yvVyYkm9Cgr0/rtcDhxp9pkdy1tdOCCL4uIcdm37BPfgMQwaP7F1HesiOuu8tBW324kmBAOGDmcfUCD7cbmcCe30B/RzXpDvTVhufM6PXQP5+VkUF7WtVGJ309nnRXEouI08TT6X+Xter6vJMl8sTa/XGz8PWbFJbca9pQn92k/VbmPZvrc+At8A7ts3g0ZHHvel6aPLqRAIRRk8KK/HGe6OPi/tGnh96qmnOPfcc3G59BOUlZXFgw8+aH5/8cUXs2zZslYZ+crKhja9AhcX51BeXt/q7TKhskrPa+JQZMLhKFXViXlOFEkiHFFb/P1wRCUSiaZczx+bHVpR2UB+jptgKIqmaSnX1WI5PAKNYUo3fUt432bcM8/ptP63h848L20lGlWJqBr1qp6U6orc1/ioGsrLx5vr1DTo5yMcip8va1/8DfHz5RC9L46yK85LKBRFinnhdfVBvttWSV6Wi4bYtV5XHzTbUN+gT5xr8IfMZbWxyXSh2DkIhqJoatN7wuiLFqijcfPnhMefwMZdg8h2OtP20aFIOBSZiorMCrp3FW05L7IsNesct0tgevPNN1mwYIH59549e1i1apX5txACh6P3B/AYZf6cDhlNa6rDKoqUUXSNqsZfX5OJx8lbJkOlk2tMTV4i8t2HgIRj7GEZ9MQG9OgaIQRSdoG5bL/AVwnrhCN6xtB0CdZkW5NvEU0I81pdv6WS//nD+9Q0hJotGpIqn7yRciLaQpx89LsP9YD8UTOB5iNnnA65V+rrbaHNvayqqiIYDDJ8+HBzmcfj4fbbb2fnzp0IIXj88ceZM2dOhzS0OzEGfpyKhKDpxJmMNXlNoKTR5M38ZMZuRLqpUPHBIqcsEfnuA5Shk5B9+S3+vo2OJOm54CWHCzH6cADCkjthnXDsbSldNIWvfifjHXtsI98MmiZwxB6GVfUhVE1Q3xgxJ0alLNqdKv2wNYSyucyrm95HLt4PpXAoQNrxL9DvIdvIt8CuXbsYNGhQwrKCggJWrFjBj370I+bPn48QgosuuqjdjexuTCPvkBPyyRsospxZdI2qpTfyyQOvtBxd4/XvRtSV4RzbPyYxdRTW+qxi5vfYGBmMWwskrBOONJ+7fNCmVZyT9YE98NoMVk/eSBNszeiqJXjt8f+NmeRNEpQ148lrDZVoFdtxjj7UEpjQgiffihrJvZlWaSlvvfWW+XnKlCk8/fTTTdaZN28e8+bNa3/LehBG3g2HIqcModTlmuZvdiEEqipalGsSU66mi66JpSou/xIkGceogzLtig36UbUaGr/mZrBWm7COKdek8OS1ujLc/n24FagK1gE9a2C5p6BpcUNrFPyIqvGJUam89pqGED++87/877nTE2a8CiGanQwV3bEWAMfIaQjjTbcFI29NFd6X6R+PsnaiWTx5oYkm+UoykWs0oU+3SefJx0MoMf9vyZN3l21AGTgWyd07ozu6C92T1z9rmsAv3LhEkicf8zxTxclHt31uflaqd3ZeQ3s5qibMUMVoSk/eoskTN/JRVaOyNpiwXtQyLpaK6PYvkHIHIuUNwhELi2wu+Zgt19gkkCDXiKZyjUORW0xUZVykLSYoS7EsGadDIVdqRKndhTJiSovtt0lEkqQEA+IXbtwiiLCcRMOTd6eYERnd8QURbyGaAKV6e9c0uhcihJ6gTJakuFyjamlSGOj/Ry1evnVmrFGKMdUMVS0cRN3zNY4RU5EkCUXWK601J9d43I4Oy7ja0+n9oS9dgGHkdblGNJVrZCnltPiEfRhGPk1aAzNBmcX4pEtr4HEpTHLu0fc33DbyrUWPrtE/a0LQqLn1Ix1uhNiM4XBUN/LOJE9eREOo+zYRGH4kjVs+J792Rxe2vHehCYEkS8hy3MhHLXlsUiUoM/JBqVo8wEETenQOxAtzWwls+xLUKI6R08xlDofUbMHvs44bmzCTvS9jG/kMSAyhTCHXZBBCGY1t1FJag4T9pLlGD5lYwtgtDUj+fOSC4alXskmLZKnPasg1ACLYYKaFMAZek3PXqPs2gRYlXDSBvZu2Uugv78KW9y4MuUaWIfbMjHny6XPXGG+81jdmTdP45JsyCnPd7De46fhH46ZPwelBGRSf5+BU5GY9+cGF/UfitOWaDDAuQGPgtYlcI8stRlkYD4qMo2tEPDNlMh6nRE7tJhzDD+xxs/V6A9boGk0QN/Kh+MSYeAhl4i0S3fUVyA6iBaNp1NzIkUZsUqPnk4+PN4GuyRshkQk55mO3T9TqycfWC4ZVvtpaxYwJJU2udyEEjd99hmPYAUhK3Gd1KHLGBUH6OvZRyADjFdL05FNG12S2j3RZKJskKEsTXSOEILLxXQgHUGyppk1IkiWKSRP4tbgnb5Auukbd/bU+2O30EBBO5EjALgGYBqsmb6APvOqfm8tMqVnkmoZABFUTDCrwNf2NulLUhiozV7yB0yGnncjW37DlmgyIT4aSY1WEmsbJt3SjRy26firkJL0mXZx89Nv3CL37F6TcgTiGHdCKXtgYyLHJUBAfeAUQwfh08nBURZISH8pqYx1a5XZcB5+GLEs0CjeSUCEaBmfiZCob3WExNHmDqKrF9fcUM16tnrz1rRZS3zvRvRsBUIZMSFh+/tzxCQXd+zO2kc8Ac+DVjK5J/N6hSC3OfDQ8+UzL/yFSFw2J7liLlF1I1pkrkWT79LUFWYoPlCcYeatcE9FwOZUEeSCwfT0AjqGTkQU0CldsOz+SbeRNvttVy0sfbCMS1esnWF9e04VQNtHkU7wxO1JkjFT3fYvsy0XOG5ywfMqYog7pS1/Afp/JAKsnnzJ3jZzBwKuhyacT2kksQqGJpkVDhBCo+75FGTzBNvDtQJIsaWw1CAonKjIiGE88F45quJNe9wNb14HTi1y8H7IkEdBiRj6cmLCuv/Pd7lrWba7EH4jock2SJ5+crgBSRddoJOd9SzW5Sd37LZ7hk+yxqWawjXwGJIdQNsknr8gthlBGzVmzqS/GrJrvOMbzdbPRNaJ2HyJQhzI48dXUpnUkTIaKjX2EJHcTTT5Zjw/u+Bpl8HgkWYnJNYYnbw++WjFmiAtoYuStmrzaWk8+ychrDVWI+nK8IyZ3dBf6FLaRzwBTanFIqQdeZanF3DXx6JrUh3zo2j9yqu9TRMx9EUI0OTmG/uiwhIrZtJ6EyVBGBAeeBI88HFETZkSKkJ9I5W6UkjGAbrwaTZnH9uStWN90ZTlp4DVdWoOkwVg1AyOv7vsWAM9w28g3h23kM0CLRQnoxjzNZKgWQyhjD4oUco2wvpdGgrFlNBl51cq2gDsLKS8xMZxN67BOhjLOW0jyJBhrvYh33JNXy7cCoMQqDcmyRCDmyWMb+QTUBCOfGEIZTZegLMlL0oRoItckvwWrezeC04Nr4MgOannfxDbyGaCqwvRIhGh6QSqK3HIIpZbek9dq9pmfpWAdEIuuSd5HxVaU4v1s/bGdJEyGip23IO5EIx9REzR5tWwLAErxfoD+oLDlmtRYnSBZkpDkJE8+VVrhpPsnpSfvaOrJK4PGIcn9Iz1BW7GNfAaosTzwhkeSPB3aIbccXdPcwKtW+p35WQrEsiEmRdeIaAitardpZGzaTnJ0DUBQcjfvyZdtxlk41EwGJ8sSQeFCINkDr0moTeSa+HfWyVBaioFXg1Qpva0DryLciFa9G2XguI5sep/ENvIZoGoCxeKRJKcozSitQTMhlIaXCCAHdSOvQYLHrlXsAKEh20a+3ejRNfpnYdXkrdE1kbiRF0KglW3BPTRuUPQHhYSquG1NPglVTfTk0w28pgqhNPfRgiavVug5g5TiUR3V7D6LbeTTIITgXx9so6ouiGZ68vp3alLyGofS8mSoeIROiljfyu2EcvUcNFLQ8OST1jE0YdvIt5vEtAaGkXdBJIDQVAKhKPuqGinK04uri/oKRLAez5BxCfsAUB1eW65JInngVbFq8qo1J016uSZVjiirXKNV6Nk/5UJbj28JO9g6DfWNEZ55ZwselwNV0/TXTuPGTvbkZQlB83VZo2nSGghNRavaSXjYEVC7FzlkaPIi4TVXLd+K5MtHzhrQQT3sv1jTGhiGJEjMoIcbWbvFT1TVmDGhGNClGgD3kPGEYvswroWo4rU9+STUBE2eRE0+qjabhdIgZQildfZxxTakrAHIvrwObXtfJGNPvqGhgUWLFrFr1y4Arr/+eubOncvJJ5/MySefzOuvvw7A6tWrWbx4MXPnzuWuu+7qnFZ3AdYcGnpFp7gmH7W4GBKWgh8Z7K9JrG/NPlCjRHKHUad5TbkmObpGK99qe/EdhDGADnFDEyA2YzXo59NvysnLdjEmltZWLdsCihNXyYiEfQBEFQ8ibHvyVpoLoYyqlhTCKdIaGKgpNPkET75yu+3FZ0hGnvzatWtZvnw527ZtM5etX7+exx57jJKSEnNZMBhk2bJlPProowwePJjLLruMd955h9mzZ3d4wzsba34NVQizEAEkavKyLFlSEoi0lT7SJSjTKvXXzmjuUOo0L7mGJy8sxb3DjWi1+3CMO7xD+tbfSU41DBC0pDbYVdbAhOH55vnWyrciF41MyHJofBeRvRCq6srm93jUpPvDWvEyEo3XOU5V/s/6d7KEYwy8ikgIrWYvrv0O6eCW900y8uSffvppfvGLX5gGvbGxkT179nDjjTeyePFi7rnnHjRNY926dYwcOZLhw4fjcDhYvHgxr7zySqd2oLMwp14LEQ+hTCHXSJJkSjTJGuLGHdVs3qN75tE0k6HUyh2gOFGzB1Kn+Uy5BuLSj1q+Td82FqNt0z5kCVNeMzz5Rgwj34gWe6iDPodBrdqJUpToNRqGK6p4bLkmiYToGinZk9eahK9CU7lGFaKJ4TfegrWqnSAEStGoDm553yQjT37lypUJf1dWVjJz5kxWrFiBz+fjsssuY9WqVfh8PoqLi831SkpKKC0tbVWDCguzW7W+leLijiuoHIldmF6fC4dTwe1SyM3VdVunpWyYokjk5OjLC4uycVvC7i6+VS98/uL/nYzHq8dUDxqYi9cdP+x76nYjl4xkQGEOG4UXR3hfbL8ybreD4uIcar7bSwAomXAAiq/3FY3uyPPSEWRnG+crh+xs/aEaUbygQbZbRZYlvF4nxcU5RGpKaYgEyRupD7oafTFSEePOQtQ2UlSU3evmL3TWebHeH7m5HtyW610TIMeMtaLIZhscSSkknE4HipJo5AcPykWSJGq376MRKJ6wP45cffuedo21h47uS5sGXocPH84f/vAH8+8LLriA559/nvnz5zdZt7UXfmVlQ4sx56koLs6hvLy+5RUzpKJS987q64MEAhE977hfH3Zr8IfM9SSgsVH/u7ysHneKupFffL2X2jq9UHR1lZ8Gh+ElCoJ7t+Dc72BqawP4NTdSNIhQo0QiGuFwlPLyegI7NyNlDaDKD/g7ro9dQUefl44gEAgDUFZWR22tfl4aok4A6soriKo+QqEI5eX1RLZ9A0Cjq5hcMPtiDKQ3qk5Qo5Tvq0Ry9J5MlJ15XhoDkfhnfxg1Gn/FDYajpmQZjF3fAKFYDdf4PsIJOr1Dkaio0HMLBbdtRPLkUBV0IoXqe+Q11lba0hdZlpp1jtsUQrlx40ZeffVV828hBA6Hg4EDB1JRUWEuLysrS9DsexPWV8omk6GS4oClpAySBtle3XB8urHcMuM1/tAT/ioI+ZELRyBZZlCqgYZYdE1sv9V7kAcM7Yxu9ktkyxiKKddYZq/qQyuxY1+1E5CaHH9DugsrHnM7G50mA69JcfJmnvgU5f+s+7DuJzlGXi4a2evenLqLNhl5IQS33HILtbW1RCIRnnrqKebMmcPUqVPZunUr27dvR1VVXnrpJY4++uiObnOXYI0AMEMozeia1DP6kiMEcny6kf9udy1R1citnTTBCVCKRiJLkpnXXAvUW3KraGg1tpHvSGTLGIr5MEcGpxcRaohVNNLX1Sp3IuWWIDk9TfYhAWHJMPK2Lm9gBBkATcv/qanzyaeKrrF+bxh5oUbRqnehFI7AJjPaJNdMnDiRSy+9lHPOOYdoNMrcuXNZtGgRALfeeitXXHEFoVCI2bNnp5RwegPWWF5Ni0XXxB6JyRexWZ81KYjS8N5VVUNVRZPIGrVyByAhFwyDirBZhk6NGXlJ0ifiEA0jDxjSGd3sl5heusWTF4DkyUKE/DGDY3jyu1AKhqXcjyxLhGXbyCeTECeflNYgak013EJ0jdVTNyYRanWloKn6PWOTEa0y8m+99Zb5+bzzzuO8885rss6sWbN44YUX2t+ybsaaRCmqCZxK6hBKyRJCmepC1felx9YnR9ZoFduQ8wYiOT3IUsRMXasF6jGi7rXq3QAotiffYSTKNfHPkssw8ronL6IhtLpSHGMOS7kfSZIISzEd3pZrTBLkmqS0BqomTCep2egaTSSEXpqRNTV79f3m205PpthpDdJg9eQNL9yc5WiJlbQuT37ltD4okj15IQRq6XfIA8cCutduyDWGJy9LEmrMyNuefMdhzMDURGKorOnJE4ulr94DQiAXDk+5H1km7snbScpMmpsMBXryN0jW5Jvuw7ofI7e/Vr1H32++nW47U2wjn4b4jFdick0zA6+GXJNi8Ah0Yx9VtYS8NaK2FBGsRxmkh+ZJkmTKNVqgAUMx0Kr3IGUVILmaVqq3aRtyKrlGoGeYjMk1kqTr8QBKQWojr8gSIWy5JhnrmJWSNPAK8fDTxELeTePkRQpNXqvZq98PSWMkNumxjXwarAmsjIFXc3JSgiZvkWtSeCMQe0XVRGKEQOkmABSLJx/GgSYpMU9eIKHLNbYX37FYB8qFZjHyFrlGkiTUqp3gcCHlFqfZj0QIO6d8MunkGlfMGw/FjHxzWSiTZ7yaRr52H3J+YtFum+axjXwaEnLXaAJFiQ+8Wj0VyeLhN/HkDb1XE2Z0jbn/0k3gzjIvWP0BIqE6fWiNepysbuT32pE1HUx8hrJFkycu12jGA7ZqF3LBMCQp9W0iSRIaErjsJGVWrB66JMUHXo05JMl5g/TPTfeRGF2jZw7VavbaTk8rsY18GrQET745ucaSYybFhQr6q2cTT756D0rBcNOAGPtQHVmogXo0ATlaLah2ZE1HEx9DSSHXaCouIkjo6SSUZpJgGeUgJXeWbeQtJGrycXnMnTSrNSFBWYqgBesyhyIj/NUQCdqefCuxjXwarAmsTE0+xcCrVcZp8srZzMCrVrM3YfDIkHxUh1ePrhGCvKg+scyOrOlYjLOgWXRfTQiIVX3yECInWgGRgCmnpUKOVQSTXFl2JkoLVk9ekePFdjyu9EY+5cCriIdOOh0yWo0x6Gob+dZgG/k0GHbc8OTlZgZeDRkn/cCrPg3eCKEUwQZ9pqulILcZnun06Zo8kK/q2Q1tuaZjsUZDaXG9xizt5yFEQSgWuloyJv1+pFg8t9tne/IW0iUo87gSI7ZbCqHUhDDvGYciW8InbSPfGmwjnwZrUQlVM/LJ699ZK0MlRtck7cN8G9DM1AigDx4BCUY+7sn79OgaIchRq5G8eUgub4f3rz8THyhPipOPGXkvIfKDu8GdhZQ3sJn9xOUaO04+jmatt2B5A27ek08t1zhNIy/pRt7lRfLmdVbT+yS2kU9DYpx8YmWoxHzyiUYj5T4sDwqwTuiwGnmjCIVPz10jBNlqDXJu78z905ORpaaevCZAcutJnrKkIIWBbSglY5rNj6Jr8vp2ItTQ+Q3vJViNtyLFy/8lJ+9reeA1nuvJGfPk5fwhds6aVmIb+TRY9XQjv7gZQpnmddRq4zURT3JgpEYwHhJabSlIClJOkbm+cdlGHT7QoriIkK3WpA3fs2k7idE1lslQbn0uwqHOTfgiNTjHH9nsfmRZQtUEkjcHEWxACK3Z9fsLCfeHLGEEJ3maG3hNMZ4lhMAhx9MS60belmpai23k06AmePKxLJRm0RDNNOySnHoyVHLVGzXByO9Dyi1CkuMaZdyT16WZbOHHp9bbnnwnYJ4HkRimZ3jyE5178LsKcex3cPP7kSSEJpA8OSA0W7KJkc4JauLJN5O7xtDkjYFXH0FEY41t5NuAbeTTYI2uSQ6hjKpxfV2RJEu0RtPtIXbBasJ8bdXqypsYb+MNNOrQvclBUoVeP9Y28h1O4mQo/bMmAIcLYg/erQVHIMnN3x6yEULp1Ys8aMG6ZtfvL1ivfUnGosknDrwKwBrCmrwPzRJ2XBKJzT4eNL6TWt13sY18GuI5TYgbeSMLpRZPUWDV6hM8eZH4KprgyTdUIOckyjCGJx926J78EMr1/efYck1Hk1aukSQkdxZVahZl+Qe2uB9Zisk1Ht3Ii0DfKFzRXpJDKFN58kY4sXmfpcjgKiyafHFwOzjcKCX7dWrb+yK2kU+DcfNHYikM5GRPPmbx9VTD+jYijSdvyAKKLOnx1CE/skWPN/YD+sArwFCpDADJ9uQ7HHMMBZHwMAdwHXwaT/gPNz36Zvcj6+fWNPJB28hDqrQG+mdrdI3DUh0teRvjb03Eo2sKG7ehDJ6QIHHaZIZt5NNgXHORWMa85IIfhodh1eRTRQs4FMlMryrLElqd7qFLSUY+WZMfLFUSlZxI3twO7plNPDW0RS6IeZKOCUezKTqYTAI4EjR5bE/eIG2cvGXg1Yw0i8ll6YqGKIpMntRIVrgCx5BJndvwPopt5NNgeBZGLU9Fls2Ze4A56i9LqStDGRe6Q5HNEEpFltAa9FmsTWSY2D7CMSPvlFT8jnw7XKwTSExrQOyz/r9h9DM57rIRQum1PXkDQ5o0sMqZVrnG0NqtAQ5WtJhc41Akxjljxe2HTu7UtvdVMjbyDQ0NLFq0iF27dgHw1FNPsWjRIhYvXsz1119POKwXR7733ns59thjOfnkkzn55JN5/PHHO6flnYxh5BM9+fj3hiefLtWwlmDkda9EliVEXWojH5cQZORYKJ/fkd/BvbKBpMlQplyTKNtk8mg1NXnFCU6PbeRp6pFbZU5r7hqz0lO6gVcRH3gd79xLVPGmzetv0zwZCVxr165l+fLlbNu2DYCtW7fy0EMP8eyzz5KVlcV1113HE088wYUXXsj69eu58847mT59eme2u9NRkz15JTEvtuGJyNbKUCmMvNMhJxQe0erLwekx86QYWHV92ZuDFmrE7xjQKX3r7yRMhkoyMsL05DPYjyyZYzaSJ8c28iRKNRCr8Rq7bxRFwumQiUTjKT60NJo86Pfe4CyVqdkVKIMmpc0GatM8GR21p59+ml/84heUlOiDgC6Xi5tvvpns7GwkSWL8+PHs2aMnD1q/fj0PPvggixcvZsWKFYRCoc5rfSdi3OyGJ59c4cbQFK2FipMnQ0HcY4mqGrIso9VXIOcUNZEDjEBMIQSKV4/XbnTmd3CvbCAxukYkDbwapzC5mlEqZFkyt5e8ObYmT+IbLCTeN4okmcvN/PBpomsAnFoj83b9AU+kFs+oKZ3e9r5KRkZ+5cqVHHxwfGLI0KFDOfzwwwGoqqri8ccf5/jjj8fv9zNp0iSuvfZannvuOerq6rjvvvs6p+WdjJpSrrEOvFo9+eblGohF5EgSor5p+CRYJQTdkwfwO21PvjNIrPGaLNe0QpOPyTVge/IGRl4nt7PpmJWiyGYZP1OusaT+SKZQ1KKg4j78fJwTj+7klvdd2hWPVFpayiWXXMLpp5/OYYfpxY4ffPBB8/uLL76YZcuWcfXVV2e8z8LC7Da3p7g4p83bJuP16RV/jAIh+Xk+iovjbfN6HLH/XRRqpeRJfnLzvGYbgrGL1ut2AnooZlaWE7G7At/YqRQltTUYigKQleVGicYG8rKLO7RP3UVP60NZvT5+lJPrxRmboCOAoqJsArHzkJ3tTtlu6zKPx4E/FKW4OIey/EIC1Tt7XF+bozPaWtugv7l73Q78Qf3Y5O7RH36FhVn64Ks/fl8MGJBFcYEvhR8P+ZK+XfEBB+Mqbj4pWW867i3R0X1ps5HfvHkzP/jBDzj//PO5+OKLAdizZw+rV69myZIlgO4VORyt+4nKyoaU+lxLFBfnUF7ecZ5UfX0QiNejbPSHqK6Kp5M1XtPD4Siud+7jZF8R1dVHmG2oqDQSVlk0x8Y6RCRIyJHbpK1GSbSGhiCyLxdNSFSrWR3ap+6go89LR1BXFwCgpqaRQCBiLi8rrzcfto3+UJN2J/clGlEJh1XKy+sJSx5Ufx1lZXW9IiKqs86LYeSNN9jqKj+Njfqy+rpAXNqMue7lFfVIqoqmaUhSouQ5QNbvt5qIF6mZtvbEa6yttKUvsiw16xy3aSSjoaGB73//+/z0pz81DTyAx+Ph9ttvZ+fOnQghePzxx5kzZ05bfqLbMV7joxa5xhpCadatJIoSbmCMsyyx+nySXAPgU/Vp71IKuUa2DN7mHTyfJ0NHI2SlyXo27Scx1bDFqoi4Jp+pXGPKO54c0KIQCXZwa3sXhnw1ZUwhx0wbQrbPGdfkZTmeOthhDLzq2wmBOcHQoED2E5a9SE53F7W+b9ImI79q1SoqKip4+OGHzVDJu+++m4KCAlasWMGPfvQj5s+fjxCCiy66qKPb3CWYkzRifydr8lJswDVL6E/dfLkRKVAV3z528zuV+DZZ0RogdaoCa056Z8EQ1kZHI2UUyGfTWmRz4LXpzGQzhDKDQy/FcteAHStvYBj54SXZLJ0/MaGQtyxLOB365+SBV82styAY79iDgsoA2U/A2bxMY9MyrdJS3nrrLQAuvPBCLrzwwpTrzJs3j3nz5rW7Yd1NsmSUHF1jTNf2afGb2l2zFRgX215fluDJm0Y+cbYrWEMojWiDzAxNawgE/DQ01KCq0Y7dcTOUlckJRSR6Ak5N8LNTh5LrqWfeNB/HHqBX3iov099Af3bqULI8Efbt256wXXJf5kzxEFVd7Nu3HeEbiDj2Shrq65EaA13an7bQWedFVfXjl+0NmMdvaJ7GmEFuHLJkevJG7pqn//MdPzrlAAR69M1QpYrLc9/gw9BYBsgNBJ2D0v2UTYbYiSDSkDwDT4+Tj/9tTNf2aQ2x9Q0jH9vekGsc8Y280Vq92lCKSk/J1aX0hFkd0hVAN/D19dXk5xfjdLq6TDd2OGRT8uophCIqUdlP4QAvDY0Rc7B14MAcNCEISw0U5HrIzXIlbJfcF6UmQCiiMqg4GxEJodXsQc4daOal78l01nkJR1Qisp/ifC9ZXidCCBoDAc44WiPLpZr3g+H8rNtcybrNlYB+jw0X+tvwTPd3AOxwTezwNvY37NkFaUie1KHIchO5RpIlfKruyW+JluCp2WZ+H5drLEY+XJM2q6SxZ/NXBR0q1zQ01JCfX4zL5e4VA4OdidH7hkDEDJFNu1JLmIH1sYRbmtqepvU5JEkiy+dj1LBhBAJ1CeX8DMwQS1liiKOakHDwbUT34IP2XJF2Yxv5NDTx5OXEGa+yLDF9bBGD3CE0VxbfRgbj8u/Ts0ySmLvGwBuuSpsfPjnWvqPlGlWN4nS6Wl6xHxEIRs0Zzcm0+tBLsUHyLq4OVd8YTqg53N3EB64TlzudLlQ1anry/mBcMgyEVHKkAJc7n2GWexP7tAH8reEovgwPoyZ7dBe1vO9iG/k0iCaefFNN/tKT9qfIFUB48tkSLUFCoJbqr5nmjNfYRS2j4Qk3X7NVkqzRBqINlqZ5+rsHb9KBh8E0arKs77gLPfmoqlFZG6Qx2HVjLC2SJvrZuPaMyVCTRsYn+gXCUUY6yimRqnFJKmWigHrh5c8NxxH0pS+kbpMZtpFPQ5McHJYcNWAZKPVXo/kGsD1ahEBG3bcJsIZQ6isOkP1IaMh56S9aa0ie6GC5xibOOWedQnnZvibLhTWGMgOaPDNlBUQXyjVJGTR7AkZ6gnQOhfFmO3CAj99fdRSgTwTMluPpTxqkeMx3JuklbJrHNvJpSCXXSJbcG2a62oYqhDefME5CvhLUSr1MmfGQMDTIYiUWI9+CJ2/9Wfv67npaby8tW8hyl2ryPci2x2mhUYYnL8vxrJSBsEp+bOLTF+ERrJfjg63222f7saNr0pAcQmmEfOVmOamqCyEhIaJhRKgB4dNfPcPeQnx1pUBc7jEeCkWyPkDbnCcvSZLpCWkdHF3T0/jss0+5//57UFWNwYMH4/X62LJlM5qmcd55SznuuDmcfPJ8nn76eXy+LH70o4s54oijOf/8C3njjVf54ovP+dGPfsJvfvMrysvLqKgoZ9q06SxfvoLPP19j7nv06DFceeXPWLHiRsrKShk1ajThsO417ti+mYf+eCeaquJ0uvjFTTczZOgIoBXjrtbLRFZSJ2HpNHqemTflqzTfG06PHHOYFFkiGIoyUGqkAR+PNBzDsOIswB9br9Ob3OexjXwakjMrGAnJcn0uqupCyLIu1QAQM/IhTxHa3o0ITTM9+Ull/0byNqJIGprsRPKmn9whYTEawljSObz/5V7eW7e3U/Z95JTBHHHg4BbX27lzB6tWvcSjjz5CUVExy5f/Er+/gR/+8GImTz6AGTMO5vPPP2P69Bns3buXL774jPPPv5APP1zN8cfPYfXq9xg3bjy//vVviUQinH/+GWzc+E3CvrOzs7nzzt8yfvxE7rjjHr744jPeeut1AP790ioWLD6Dw2Ydw4fv/4evvlrPkKGxnOWZTIZKWkmSFIQWSbN259HzTD1pj5/hyRuzxz0uJebJN+KPyTTWYAXJtvLtxjbyaUilyQNm7LQsSWj+2AxX3wCgmpCnELQooqFSL12GyqDqL8h3S+yIFhH2FDb7+ilZNXn6vhczfPhIsrOz+fTTjwmFgvzrXy8AEAwG2bp1C7NmHcmaNR8jyxJz557Im2++RjQaZe3aL7jmmmW43W6+/no9Tz/9BNu2baW2tpZAoDFh3wCff76Gm2++BYBp0w5iyBB98tP0g2byl4fuYd3nnzBtxkyOP2GupXVtOPiyAppqFgXvbOLhtj3HzJtpHtIcP6snD+ByKgRCUd3Iy7qzZJ1bYmvy7cc28mlIjq5xJBl5SZIQDfokDtPIuwsB0OpK0bQiRjkqUESELBkmOPdQkzer2d80NHnRBTftEQdm5m13Jm63npNE01RuvPFXTJiga7FVVZXk5uZRX1/Pk08+jqI4mDHjEHbs2MZLLz3P6NGjcbvdrFr1JG+//RYnnXQqS5Ycytatm81jZ+wb9HNlnd2pKLoWfOis2YwdP5nPP/uQV//1DN9t+IyfX7Ms8w6kGnhF6GGUUhfkHeo5tr0paWyzGW0mQXTnl1zuXMW7jceRJzdSJetSmXVuSV93dLoCe+A1DakGXgHyTE8etCS5Jugu0LetLUUTgnHOvQjixUUaBjZfLUuSpKT8Kf3jCj/ooEN4/vlVAFRUVPC9751Daek+BgwYgNvt5v33/8uUKdM46KBD+MtfHuLww/WojE8++YiTTjqNuXNPBCQ2bfo25VT9gw8+lNde+zcAGzZ8xe7degnL39+5gs3ffcPxcxaz5OyL2LRpY6vbnnCVGAnl+vGEqJbKJxoG3FO+gcBrv6eYauaH/kWWHKZR1t+8nA5brulIbCOfhrRyTSzPfGMoivBXgTsLOZYlL+zMBYcLrXYfqiYY5yglkDWEMjWHSjWLcP6oZn9TNjz52N/9xMZz8cU/IBQKccEFZ/LTn/6QH//4SoYOHQbArFlHkJ2dg8/nY8aMQ6ioKOfww48E4Mwzz+WRR/7ExRefx513/pYDDpjC3r17muz/+9+/jN27d3H++Wfy2GN/YfBgXa456bTzeOG5J7jhfy/lib89wI8vv8o8+JkcegkSrLzUxUZeJP3fE2ipLQ6HzBCligFrHkTOH8yzniXIsQlkAUVP8pboyfeTm6ATseWaNDT15GMDrzFPviEQQWuoQs4qiJeTA5SBY4lsfA/3xMmMcFRQnzeTJ/bqF+/JSgbPVGHVNfsuBx10MAcdpFcby8rK5qabfpVyvQsvvIQLL7wEgDFjxvLee5+a382YcQh///uzafdvkJWVzS233G7+rWoaO0v1nEO/uvV+c/mw4uwm571VxIy80NQ+fe4yIZ1tdioyw5VKJATeOZdT/epe/l57LGc436baqUeeWTV528a3H9uTT0P6EMqYkW+MIPzVSFkDLOXkwDP7+0iywuiNf8MlqYTzRrI1WsLWaElCWoRUSJKERlyusa/wziHdoGCrzbvUzXJND3Tl4+NJaSZDOSTyZD1Lp5Q1ALdT4cvAIG6oOZN6tz6HJNvrNNf3uZ0p92OTObYnn4YmRl5JNPKRQAOaVIazZL+EvDNydiHOSbMRX/wLgOiAkcBufR8tGG1DrjHuWluO7HrMs55RCGXCFiB1bWoDY05FD7LxJuku9Tyfi3y5EeHORlKcuJ1KTBqVzOCGwlwPK75/KKGIyn6Dc7uu0X0U25NPQ3KcvJw08DpXvAfREM4JR1tywev/O0YfCkC95oGsoib7SIcRQtmG6oc2HUL8wGf8fE2YoSyZYZRdS8+5YFpqycSRA5i5nwslWw9WcLviUUjG27IsSwwrzmbMkDxbk+8AbCOfBqsnb1SBAvB5HEhoTHNtxTn5WJSS0XFNPraNXDgCv2cg30UG4nBYL+LmD7ceQinimrx9gXcKHXdYU+xIVvp3uuEWBq4lScIZrkeKRaQZqQ0g/ras2K+wHUpGRr6hoYFFixaxa5ceerZ69WoWL17M3Llzueuuu8z1NmzYwOmnn868efO44YYbiEZ7UHa8VmIdgLMaZ1mSWHnBAcgI5LzB5jIgwTivG30RT/gPTwgHy0iTF8RvFPta71IsSllGmDUALNeK1JWevEj4r0cgMrh4RWM1clYqTz4eQ2/TcbRo5NeuXcs555zDtm3bAH024rJly7jvvvt4+eWXWb9+Pe+88w4A11xzDTfeeCOvvvoqQgiefvrpTm18Z2INoUz2LIo9+tR1yaenKIgXho6vE1E8hHEmTNFuyUORJEDEHzB2FsquR7TFyluRFb2gdxcgmnzoAbTgyQs1igjUIWWl8OQtco1Nx9GikX/66af5xS9+QUmJPvK9bt06Ro4cyfDhw3E4HCxevJhXXnmF3bt3EwwGmTZtGgCnnXYar7zySqc2vjMRzRh5EagF4kbe9OQtd5ualGoYMvDkkbpktmt/J60MJhJWatvOFQcIDdHFxUN6Ci0NXIvGGv1r08hbnCDFmDhoG/mOpEUjv3LlSg4+OB5zXFZWRnFxvIRdSUkJpaWlTZYXFxdTWlrawc3tOlSLsU02zqJRN/KyN9GTt9pnLUVlqJblGv1twNiP7dC0jvfee4c///mBjNdXmpm30JpDnxhGGQtYU/t+yuGXX36RlStvTlzYkicfmyUu+5qRa+wLv0NpdQhlKk/TmlgreXlrKSzMbnmlNBQX57R522SsF5rLKSfsu+a7IEGgePhQZLeXSFS/oX0+l7mex+tClqC4KL5dcVE2xcXp++d0KLjdDvNYZud4OqxPZWVywiSTrqSrfveYY47lmGOOzWjdocXZuJwKW/fUmssURUaKHXtFSX28rMsMo+RwxOv/ak4nEUCRNORO7rcciXu+bTnG7T0vslFjIUUaAqezae4eWYLoB4+CJFM0ZizO/BxKChvM73Ny9Jnj+XneVl/3HXnvdzcd3ZdWG/mBAwdSUVFh/l1WVkZJSUmT5eXl5abE0xoqKxuaxKhnQnFxDuXl9a3eLh3hSOLrtnXfwfIycLioqI0gSfE6ofX1QXO9hoYQsixRU+M3t6upacTVjN+laRqBYMRcw98Q6rA+aZpG1FK0OvLt+0Q2/rdD9p2Mc8LROMcfAeiGJJqiWPZnn33K3/72MELAnj27OOaY48nKyuLdd99BCMEdd9xNQUEh77//Lg8+eD9CaAwZMpRrrlnG11+v54UXnuO2234HwDPPPMXOnTsYP34in3++hhtuuJklSxYzb94CPv74AwKBIMuX/5KJEyexZct3rFz5S1RVZerUaXzwwWr+/MjTVNUFiaoaQhPs3LGV23/9B0KhINXVVZx99vmceuoSlixZxMMPP05BQSF1dbWcf/6Z3PmHv/P+e+/x8MN/JBqNMnjQYP7nku+RnxPmzLOWMHnyAWzatJH77vszTz/9d9as+YS6ujry8/NZufI2CguLePPN13nooQfweDyMHz8RVVW54Yab2bDhK+65505CoSB5eflcc80yM4MmgKpq/PoXV5Ofl8fuXdtYseI3VFZW8tBDD+htGTyUa6+9gZdffonq6ip+/OMr+eSTD1m27H95/fW3AZnzzz+De+55gC+++Jwnn3yMUChEKBTiuuuWM23aQfzkJ5eSm5vH1q2bWbHiN2ze/B1//etDZGVlM2jQILxeH9Goxr33/o5PPvkIgcS0GbP42ZVXNDnnaihIuGwH3nlXURPxQXk94WA8NXM4pI9lNLTyuu/oe787aUtfZFlq1jlu9aN86tSpbN26le3bt6OqKi+99BJHH300Q4cOxe12s2bNGgCef/55jj766NbuvseQkLUwhSYvefPMNxWzSlSSXCNLiXVhW5oMReyNKJ6grB0d6AV8/fVXLFt2E48++jTPP7+K/PwBPPTQo4wdO4433niN6uoqbr/9Fn7zmzv461+f5MADp3Lnnbcxc+YRbNz4DXV1erWtN954NZakLJG8vDwefPBvnHLKaTz66MMA/PrXN3PJJZfxl788wZAhQ9E0NWHcBODtN//FuedfxJ///DfuuecB/vSn+3A4HBx33Bz+85839HXefouZhx9No7+BP/7xXv7v/+7lkUee4NDDZvHHRx8z5ZqZMw/n739/Fr/fz44d23jggYd58slnGTp0GK+99grV1dXcc8//cffd9/PnPz9q9ikSiXDrrb/mF79YycMPP87ZZ5/Pb3+7MuVxHLnfGP7+92cpKirhgQcsbTl0Jvff/3sOP/xI1qz5BIBPP/0Ej8fDxo3fsGfPbrxeH/n5A/jnP5/httt+x1//+nfOP/97PPHEo+b+x4wZy9///iwDBhRw//338Ic/PMgDDzxMY6Oe1nnfvr18+OFq/vrXv3Pb/91P6d7dhEKhJu0UagQpuxDHyGnxfQ/N44xjx3DGMWOYMDwfsEMoO5pWe/Jut5tbb72VK664glAoxOzZs5k/fz4Ad9xxB8uXL8fv9zN58mSWLl3a4Q3uKjRNv9hUTSAnxbeLQJ056Apx/dGIirn7H2tZu7kSj0tJkH1a0hrNBGVdECfvHH+E6W13F6NHj2HgwEEA5OXlc/DB+iSygQMHUV9fx9dff8WkSfszePAQAE466TQeffQvOBwOZs8+lnfeeYtDDjmM2tpaJk8+gG3btibs/7DDDo/9zljeeec/1NXVsm/fXmbN0hOcLVx4Mv/4x5MJ2wjgvKU/YsfmdTz66CN8990mM0f9iScu5M47b+f008/ijTde5Zzzf8Dm7zZQWlrKlVf+ENDTJud43WaEzeTJBwAwbNhwfvKTq3nxxefZsWM7X331JUOHDmPdus854IADKS4uMX/jv/99m507t7Nnzy6uu+5nZtv8fj9WDJ9i/ITJAHz99XpKS/cltCU3N4+RI0fh9zdQV1fHunWfc/rpZ/L552twuTwcfviRyLLMLbfczvvvv8uOHdv5/PM1Cde80Ycvv1zLAQdMoaBAT6k9d+6JrFnzCUVFxbjdbn70o4uZdtAszjz3+wmpnk3UKErJmIRFTofMiYeNBGBHqe7B2ka+Y8nYyL/11lvm51mzZvHCCy80WWfixImsWrWqY1rWzWhC4HDIqGHVnG5tIBprkfMGmX9LkpRQ1WntZj3PfBNPPsMZr/0lwMbhSLz8jDzvBskRKkII1JiHPHfuAv785/upr69jzpz5KffvcrkStpVlpfnopdhXv79rBUWF+Rx91GyOP34ub775GgCTJk2mvr6ODRu+oqysjP33P5A9+97kwAOncttt+nyRUChEw97NiJiRN4zdN99s4Oabb+Dss8/l2GOPR1HkWJvklPKkqury1F/+8kTsb5Xq6qqU7XW54nn5p0yZym9/G2+L4W0fdtgs/vvf/wAShx9+JA899ABCSHz/+5fR2NjIJZcsZd68BUydOp0xY8byzDPx8GejD3pefkvUWex8ORwO/vSnv/DFF5/xn7ff4RfXX8599z3IiBEj401VoyA0lEHj0h7+YSXZnHP8OCbvV5B2HZvWY894TYOmCTPlqdU4C01Da6xJ8OQhsT6rgSxLCdtmEl2jpxq2c9eA7kF+/fWXZvrgF154loMOmgHAAQccSEVFBa+++nJKqSYV2dnZDBs2jA8+eB+A119/JeXb0pfr1vC9Cy/lqKOO4YsvPgMwHy5z5szn9ttv4YRYFakxYyfx1VdfsmPHdgD+8pc/c/8jf20SXfPFF2uYPn0Gp5yyhFGjRvPxxx+haRoHHDCVb775moqKCoQQvPHGa0iSxMiRo6irq2Pt2s8B+Ne/XuDmm29I3TERP17JbbnvvrsBmDXrSB599BGmTJnGuHET2Lp1Kzt3bmfChIns3LkDWZZZuvRiZsw4hA8/XJ0yL/+UKdP4+usvKS8vQ9M0s4zit99+w09+cilTp07nwksuZ+jwkWYbzCZGdfkm2ZO3IksScw4ZnhA7b9N+7ARlaVA1YWq1VuMc+vDvEPKjDJ6QsL5hoK3IsoRV6WnRkyexaEifF+VboKCgkGuuuYFly/6HSCTKoEGDuO66m8zvjz9+Dh999IGZez4Tbrjhl/zmNyt48MH7GDNmnO6lJs1zOO2M73HVTy8jNyeH4cNHMnjwEPbu3cOoUSOZN28Bf/7zA2Y5wfwBBVx77Y3cdNP1aJpKcfFAlv/sqiYToo4/fi7Lll3D9753NoriYMyYsezdu4cBAwZw1VX/w9VX/xiXy83gwYNxuXJxuVz86le3cvfddxAOh/H5sli+/JcJ+0z2/wsLi7juupsS2nLTTSsAmD59BpWVFUyfPgNJkhg/fgI5ObqjMnbsOMaOHc+55y7B4/EwbdpB7NvXtP5vQUEhV111DVdd9WM8Hi+jRu0HwPjxEznggCksXXoWDqeLEaPGMXPm4Ykbq/rxkPMHJe/WppORRA+bfdNTomuu+N1/8bodVNQGGTM0lxsuOBitZi/+p6/Huf/xeI64IGH9S29/mzkHD+OMY8dy8a26tDUgx81vfziLS29/G4D7fz67WS/l5oc/piDXw1XnHsSFK15j6bwJHDN9aNr1W8O+fdsZNGhkyyt2MOmia7qLRx55kMWLT6WoqIh33nmL1177N8tv+g2lVY0MKvShCSiLffa4En2g5L7UN4aprA0yrCQ7YT6E1liD8FcjF45EaiFfUW1tDatWPcVFF/0AWZb53e9uZ9iw4SxZcnaLfWkIRKioCZDldVKc723Vceis81JeEyAUVhlWkhjtoTVUsm/fDoaMnd7hv2lH1zQfXWN78mnQhDBvXCMqJvzNOyApuKYvbrK+LKfw5KXEt4AWB5SSv+7fjnynMHDgIK6++sc4HA5ycnK57robE1foiJQSxoQoLQqyq9lVjVq2S5eehaIojB8/kcWLT83wh3qUfwbEDl+qQ6dGY6mYbboa28inwSrXGINk0W/fxzFyGrIvv8n6Rn3W5GWyMShLpgnKBIYcak/v7ngWLFjMggWJD+lAqJ25ZpJsrSQ79EUZJCqTJImrrvqfdv1uzzL1IqWNF5pqG/luwj7qadC0eEoCWZYg5EcE61EGj0+5vpxCkzeMvizrhr4lox2v8dqzbtt+Q0LumrZtBkAs6kSonZuorCcmKBMiTeivFm1RurLpHGxPPg2aJszp2oosIYK6TiZ5Uk85TpVcLBTWPblMc3GY6SFayP/RNiSE0JBsbyotrbWVlpirxC/MMoBdlWq751j5VC0RQugPPPva6xbso54CvTqTMOPjFVlCM4y8N3U5MjP80WLow7GBreRQynSYRUPMvzvOzLtcHmpqKohGI3amyySsR7lVRybN+ZEkuUsrRPWosykSD4sQgmgkSG0ggLPLHno2VmxPPgVmGT+rJx9owZOP6enWPPQRw8hLEiKDx6keQmmd8drWHjRlwIBiGhpqqaoqRevCykX6ZJ+eE12TikhUo8EfRlZdCCFoaIxQrrmbpDtI7ksorNIQiFCaYl3NXwtSLXLSLNWOJBBS8QcjhBsVRKh1Ba8767zUNoQBkCLxAWdJjSJ/8w75k3tvmpPeTL838pomePnD7Rw/Yxhet344DC3dEdMQFUVuUa6RZSk2I7OpX6XIUkazWFOlLO4oJEkiJyefnJz8jt95M/SG8LbvdtVy53Nr+NlZUwmEVO5/fj0rvn8og5Iyhib35eMNpTzwz6/41SWHMagoK2HdwGv3oNXuI+uMWzqt3W+u2cXjr29jyphCrjpjaqu27azz8vCja3A6ZK45Jx4qGfn2PYLbP0Y+7JQO/z2blun3cs3Osgae/e8Wvt4WnzKuJRX8kCUJEdATR0nedJ68ngteTeEdJYdSpsNMa2DOeLWja7oEy8O1NXmDjHVSptnOKkBrqOpUacxwRpKjuroTVdPM4h/msn3fgsuHnGtPhOoO+r2Rj8aMckSNG2ezqpMh1yixgVenB0lJ/Vosxwx0NMVELn3ma8tGQ04qGmLHyXcN8Teo+GzjTMbK5WbevOScYogEIdR5co1RvawH2XhUTTTJthrdvQHHkIl2dE030e+PuuG1W2UWw/tyKInRNemkGgCXQyYYVlPKNZkPvBoJyowJOTZdQbwQewd68rlFAGh1ZR3VzCYY/kRPGkhXNZFQcUurL0fUl6MMmdSNrerf9HsjbxjlVJ68NUGZCNSnlWoACvM8VNYFUdVUco2UkfQSj9Ax/rbNfFcgJcg1icsy2S6VXCLn6KmDtfqKJt91FIZxb0sakM5CVUWCQ6Pu2wSAMnhidzWp32MbedHUkzfuGcWSoKwlT74w10NFbTAhusYgY08efSJUZ0TX2KTHSGFghM7qyzLYzvIGkIycE/Pk6zvTk+95co2mJRp5sx5y7HjYdD390sgLIfj823I95NHw5C3Jmp777xYAM+mTQ5ZjRj51jDxAUZ6HOn+YQLhpLLCSoSavyzU9LO65HxD3yK3LMhlDidV1TSXXuLxInhxEXed58kZ7e9zAq9XIh/wgKeD0dGOr+jf90shv3l3H75/9kk07a+KafGwAtqouyH/X7uH4g4YxbazufSgyiEA9cjNyTVGe/kAoqw40+U6WWqfJG1bejq7pGuIG3eLJt3PgFUDKKUarL29/A9MgeqAnH9VEQnSNCDUgebJs6bEbaXOc/D/+8Q8ee+wx8+9du3Zx8sknEwgEWLNmDV6vbvR+8pOfMGfOnPa3tAMJxrztxlDUTAZmePKhiD5RaMywXNMwO0VEz73RnFyTp3sqViO/32Dd85ekxLzy6TDCMHuSZ9YfSKXJZzaGEvPk02jick4RasW2jmhiSozf7UnXi5ZULlOE/EjurGa2sOls2mzkzzjjDM444wwANm3axOWXX85PfvITvve97/HYY49RUlLSYY3saIxBVqtEY2jpxjKnIps3sQe9hFpzA69FMSNfWq2ve/WZUzlwtF4LM1O5xgjDNLCdn67BWqO3NZEq1tDLVMi5JUS3rkFoUSS54+cdGj/bo6JrkgZeRbABbCPfrXSIXHPzzTdz9dVX4/F42LNnDzfeeCOLFy/mnnvu6ZFT2qMxHT4UUU1vyDDuxgPA6ZBNw+zRYka+GU8+P9uNIkuUxjz5xLJ/mRcntqNruh7rAGpr8gbJzQy8QqwKklA7TZePT4bqlN23CTV54NX25LuddrsXq1evJhgMcuKJJ7Jz505mzpzJihUr8Pl8XHbZZaxatYozzzwz4/01V+GkJYqL0xthK94dNQC43U48sVQGLpeD4uIcSuv0WpRFBdkUF+ltyXPq8s6AwYPwNPMbhXkequv17QsLssz2uF0OFEVusX0ejwPFL5s3b16eN+M+9WR6eh9CMSOZk+NBCUYAKC7KZkBu08FCa1+MayU3zXkKhsewB8gWNWQVpy9g3Va8Xj0/jCK3fG2lojPOiyYEOdluc9+BSCOe/NGdfg309GusNXR0X9pt5J988kkuuugiAIYPH84f/vAH87sLLriA559/vlVGvivK/1XFJJXKmkayPPoM1np/iPLyeioq9RmKDQ1BGuqcuJ0Kroie0qA2KFPfzG84FJlaf1DfX33QbI/P7UCWpRbbFwmrRKKq6U7W1QV6fN6XlugNuWtqYtdDbV3ALCBSVeUnGookrJfcl9pa/a2turoxZR+F0MdkanZsoXFAx8eJN/j1h0w4orb6GHfkeYlEVRoCUQbkuImqGqFQxNx3NNBASLg79RroDddYpnRG+b92yTXhcJhPPvmE4447DoCNGzfy6quvmt8LIXA4el4ONGPCUjiimVq8Ue/S1OQdMi6nwm9/OIv9CvTXz+ZCKI1tjBzy1lfW7y+cxMULWr7JzclQZD7r0qYDSJHWIJNA+bhck9opkdxZSN5ctJqmRbE7gnh0TffqNW+u2c1ND31kFqFXYgOvQo1CJGjLNd1Mu4z8xo0bGTVqFD6fD9AvtltuuYXa2loikQhPPfVUj4usAYjENPmwRZM3cs5E1fjAK0BulgtCDaC4kJzuZvfrdMQPp9XIe92OJkWhUxFPaxD7O8P+2LQPqyZvVvPKJLomdrqbe/GU8wej1exrdxtTYQx3dXd0TX1jGH8wSjiSWCRHhBoAbCPfzbTLzd65cyeDBsUzy02cOJFLL72Uc845h2g0yty5c1m0aFG7G9nRRK2efOxzKk/eoKWUBgYuq5FXWv/8NEIo7RmvXYtxpoQgXpWrAzx5ADlvMNFta9rXwDSIHjLwagQyBGNvsQ7TyOvSp+Rp+zibTftpl5FfsGABCxYsSFh23nnncd5557WrUZ2NYdBDUdVMa2AYfiO6xmEx0i2lNDBwORTzsyPDaBor8VTD8b9tOh9rorF4crjMcg1B8560nD8IEaxHBBs63NhpPUSuMSYSGuMZSrKRtz35bqVfzniNmJ68Ra5Rm/Hkg5l58o40ck2mSHryGkTsNdw28V2DGe9O3CvOKEEZzYdQgi7XAJ2iy/eUOHljXCuYXNM4aBh525PvTvqlkU+Uawwjn2jsEzz5QF2Gnnw75Rr0EoKicyp526TBnLlqOfYZyTVyBnJNJxp5M06+m6eiGPdM0PDkY9e+rcn3DPqpkY8NvEbVeHRNE0/eOmsvU7mmfZ68bKca7hYsqWssmnzmck1zjrSUXQSyA6224wdfzeiabk5pl+zJK8kDr7Ym3630UyOfIoQyjScvIiGIhjOSa5xWTV5poyaPXTSkq7Fq8vHomsy3a06Tl2QZOW9g53jyRnRNN4+8GveOkYHVNPJBvx6CZGeg7Fb6p5GPNqPJqxoORYrfwLHKPnJOcYv7TQyhbMOhNePkzT9tugBrquHWvEXJGQy8Ash5gzpJk+8ZWSiNCLWmnrye0sB+I+1e+qWRNwdeo5pZ49Uq11iNtVZXCoCcO7DF/SZq8m2Va0SrJAOb9mOqNa1MUNZS7hpzvfzBaHXlCDXS/IqtpKcU8m4i11g0eVuq6X76pZG3avLJnnxUFQmDrlptzJPPazmrptPZ3ugaKWFCjm3juwZTrqG1qYb1/1t6MMiFw0GoaNV72tPMJsSjazp0t63G8ORThlDag67dTj818uk1+UhUTQyfrCtF8uQguXwt7teIk5clqU1eeHLREJuuwVr8Iz5HoeXt4vnkm19PKRypr1e5o40tTE3PiZNPHUIpgnYGyp5AvzTyEYsmnxxd09STL0XKa1mqgbgm3xapBiwzXu3cNV1KyslQHejJS7kl4HCjdriRN/7v5oFX08jrnrzDEl1jx8h3P/3SyKsWTV61GHeIafJWI19XlpEeDxYj3wapBvQ3AE0TrZqQY9Nx6FJZ5sddtsg8zSHJMnLh8A735IVZGapDd9tqzIHXUIqBV1uT73b6pZE3EpRB/BUz7slr5sxVLViP8Fch52ZW5crVTiOvyJL+ZmHOhbKtfFcQN9a6J5/pcc8khNJAKRyBWrGjQ6UVU67pZiuvJoVQyrJkZ6DsQfRLI28YdIgPFqmaHiNt9eTDnzwDkoxjv4Mz2m9crmnbYVUUCVXTWjXr0qb9JE9qytyTj22XgZGVC0dAJICo77gqUcKUazpsl20imiK6xs5b03OwjXzsFRP0186IqodQipCfyIZ3cE4+FqVgaEb7NSZDtd2Tl1HV1uU0t2k/yZOhMh0LkWTDk295XaVwBABq5fa2NTIFPWbgNUWcvG3kew790shHopr5im68YoKuy0ejGg5FRvNXAQJl8ISM99teucYhS3qSLC3zTIg27Sd5MlSmpy+TVMPmugXDQJI7VJfvaXHy1hBKO6VBz6FfGvmoquHz6FmWjQsT9ElSpiffWAuA5M3LeL8dIddAPPrHlmu6hnjumlh0TYbHPZPcNea6Dhdy/mDUio4z8j0lTj6aasarnYGyx9BPjbywGHmrXGN48hIioNd1ldtg5NuSSx7i8cXGjFzbyHcN1spQQmQeumq8aWXqScuFIzrWk7foRN3pzatJIZS6Jm9noOwp9FMjr5EVM/JWfd705BWLJ+/L3Mi7OkCTh7jGacs1XYNxlI0apRnLNbG7J1P7qhSNQPir0GIORHuxykTdqcsb0TXmbGFZQgsYb8ItJ/az6VzaVRlq6dKlVFZWmsW6V6xYwY4dO7j//vuJRCJceOGFPbJKlC7XOJssV1WNaCx3jRaoBcXZqgx6RlqDNss1si3XdAeJnnzrQygzNbByyRgAtNLNyKOmt6GliVgHfDUN2njZtZto0pRfhywh6ir0meJ2Bspup81GXgjBli1bePvtt00jX1paytVXX82zzz6Ly+Xi7LPP5rDDDmPs2LEd1uD2IoQgqgrTk7cSiWpEYjNeRWMtki+vVbNOjdDLts54Nbazvl3YdA2SFM9d09oQykylEqVoFEgKatl3ODrAyPc0T95AkSW0+nKknKJuapGNlTYb+S1btiBJEj/4wQ+orKzkzDPPJCsri5kzZ5Kfnw/AvHnzeOWVV/jJT37SUe1tN8bMVqsnH6u6h6oJMwulaKxD8ua2at8uZ/s0ecOTj5qavO3KdxVyLG+QRitCKM3JUJn9huRwIReNQC3d3NZmJmB9uHSXJi+EMDV5A1mW0OorUIpGdkubbBJps5Gvq6tj1qxZ3HzzzQSDQZYuXcqJJ55IcXE873pJSQnr1q1r1X4LC9s+Gl9c3LL+1xjU070WDYgnHPO4FQIhlaxsD1FVIzfXg1JbjyN/YEb7tKLIEh6Ps9XbAQzI19tkyDWFBVlt2k9Pozf0QZIkvF4XmiShKFLaNluXG8bN53Nl3Edp5CTq175JUaEPSVZa3qAZHEp8+8LC7JQSZHN0xHlJ9dZZUpxNWUMlWfvPorCLzn1vuMYypaP70mYjP336dKZP1185fT4fS5Ys4Te/+Q0//OEPE9ZrrTdaWdnQpko3xcU5lJfXt7heXWNYb5dFR3Q6dCNfGts+EooSqatGFI7OaJ9WnA4ZTdVavR1Aoz8ExIuaVFf78Tl6tzef6XnpCfj9IQKhKEKQss3JfTEkkoaGUMZ9jOSPQkRClH69DmVg+2TMkGWOR3l5fauMfEedl1BEbbKsevdu0KIEldwuOfe96Rpribb0RZalZp3jNg/VfPrpp3zwwQfm30IIhg4dSkVFfNp2WVkZJSWZ5X3pKgz90OuOP9/cMZnFiJl3yAIRbGhVjLyB0yG3K3cNxEMo7ZHXrkOOafKtSVAWTzWcuVOiDJ4IQHT3161tYhOsCk13pTZQkzx5l0NGaawCMqumZtP5tNnI19fXc9tttxEKhWhoaOC5557j9ttv54MPPqCqqopAIMBrr73G0Ucf3ZHtbTeGAXU6ZHOGqtupv/YakzmytAZAtCp80sDVDiMvm5p85nVGbToGI5e/Hl3Tmu1aV0hb9uYiFw5H3bOh9Y1Moido8tGkp8uYoXnQoDt6tpHvGbRZrjn22GNZu3Ytp5xyCpqmce655zJjxgyuvvpqli5dSiQSYcmSJUyZMqUj29tuDClEUSRcToVwVMMX8+rrY1JOfqM+YUWJhby1hhEDcxhS1LYJIEacvB1d0/VIlvq6rZEY5Vg1r9agDJlM5Os3EdEwksPVuo0tJETXdJMrnxxZM2FEPpp/NwBS9oDuaJJNEu2Kk7/qqqu46qqrEpYtXryYxYsXt2e3nYphQJ2KrEfDBKAgzwO7atlT0QhAfsMWcGfpZdtayRWnt/2hZoZQRu3omq5GL9iie/KteYOSJKnVXrRj6GQiX76Kum8TjmH7t7KlcbQeKNdMHDEAsbsBHC4kh7t7GmWTQL+b8WrINQ5FNmeo+twOfG4H3+2uAQQ59VtwDJ6IJHXt4XHYk6G6DQldlG9NWgOIafmtfPFSBk/Q4+V3f9XKVibSE+LkjQgj4+11v8G5iGA9kqfvRLv0dtrlyfdGDC/Z4ZDNuHZFlhmQ62Z3uZ9CuQElUI0ydFKXty1ZrrFtfNdhyjWtNJZt8eQlpwelZDTRPRtoj6/bE3LXGNfqSUeMYsaEYhRZJhK0y/71JPqdJ1/ToOvuPrcDlzOea2ZAjn67TXTt05cNmdzlbTOzUNrRNV2OJEloGLlrWuHJy23LAqkMnYxWvg0RbGj9xjGsv9tdE14NT16RZdNJEcEGO8VwD6LfGfnPvi0n1+dk5MAc3JbC2wUxIz/ZW47kzUPOH9zlbTNnvMbeNvrdyelGdNlFxAZeM99OQmqTVOIYfiAgiO76stXbGugFTuKfuwPTyFtSeehG3pZregr9yo6EIirrNldy0IQSZFkyPXlZkhiQ4wEE+8l7UIZM6pZBz6Zx8l3ehH6L0yETiWp6CGUrzr0xYNta5JLRSN5cots+b/W2BkKIeNHsbvLko+YYl9XI19uefA+iX2nyW3bXEoqoTBurJ04yjHyWWsuEiv8yJGcfWaIRx/ADuqV9cpInb6ca7jqcDoWIqrVqMhQY8fWt/z1JknGMmEpk66cINYqktP5W1IQuk0RVtU2zxDsCI4TSlGo0FcKNtpHvQfQrT74xViAkP1uPTXY5ZLKkIDO2/pn86q8YKNeyteRYHGMP75b2GSmKo3bRkC7H6ZAJR1rvycty2+QaAMeoGRAOEN3ZuvxOBlqCJ9/Nco3RDqO2q23kewz9ysiHo7qRNzx4l1NhjKMMV9RP5MgfcXPtEsITT0SSu+ewOOwslN2G0yHrMlmrPfm2x6grww/UJZuN77Zpe6EJUwvvrjj5qCUkGXSpBrA1+R5Ev5JrjPhzI52Byykz1FGFQKJwzGRuvijMsJLu80DiA6/dXLSzH+JyyEQiKi6H3CqZTG5DCKWBJCs4xh1B5MvX0AJ1yK1Mba2JuBbeYzz5oFH2z/bkewr9y5OPJHnyDoWhShVBTxGSw82IgTmtCp/raAy5xq7x2vU4Yp58a8r/gRFf33YD65xwFAiV6KbVrd5WH3iNedDd7sknGXlbrukx9C8jH40nJ4OYJ69U0+gb0p3NMkkOobTlmq7D5VDM6JrWjHe3JXeNFWXAEOSS0UQ2vtvqh4UmsMg13R1Cacs1PZX+ZeRjnrzTIaPV7uOwr26jQPETzOr6mPhUJIdQ2ia+63A6ZMJRrdUJytrryQM4JxyNVr0brfS7Vm1nHXjtNiOvJsk1sSLltiffc+hfRj5W2k+WJMJfvo4z6icqZBrze0YN2iY1Xm0r32XE4+RbK9dI7R70dI6dCS4f4fWvtWq7BLmmmxKXGkW8zYHXen0yYXuya9p0LP3KyEciGi6HjAgHiGx6n5qSg/h59fmEc4d1d9OA+HR6c8arLdd0GW2fDNX2EEpzH04PrknHEN36KVp9RcsbxNC0HiDXJHnyWn0FUq6dR74n0a+MfDiq4nTIRPdsgEgQ/5DDgLie2N1IkoQiS3Y++W7AlWDkM99ObkcIpRXn/scDEuGv3sh4GyGEGXbb7dE1xsOmvhw5p6hb2mKTmp5h3bqIcFTD5VTQKncCEqJgBNCzPGarke9Bzerz6Jq8qs94bWUIZUcYWDm7EMd+BxP55h1EOJDRNomafLub0CaMfPIOWUZoUURDpV0RqofRrjj5e++9l3//+98AzJ49m//93//l+uuvZ82aNXi9XgB+8pOfMGfOnPa3tAMIx+KgtcodSHkluLw+IDHvRnejKBLhkJ3WoKtxKjJC6Ear1ZOhOsjCuqbMJ7rlY8LrX8d90Ektri+EJaqlm8v/KYqEaKgEIWwj38Nos5FfvXo17733Hs899xySJHHJJZfw+uuvs379eh577LEeV8Ab9MlQLqeCWrUTpXAE+w3O5azjxjJpZM8pU6YPpOlRQLYn33U4YwVkQlHNrPmbCW3NXZMKpWQ0jpHTCa/9N67JxzUboWJo8KPVLWyVsrpRk4+V05Ql1Nh4gq3J9yzaLNcUFxdz3XXX4XK5cDqdjBkzhj179rBnzx5uvPFGFi9ezD333IOmdY2+/J81O7ln1ToisdQFqQhHVLKUKKKuDLlwBLIsMe/QEebkqJ5AW4uA27QPY+5EOKK2Krqmo+QaA9chp0MkSOiLfzW7nhCCfNnP3MYXWZ73PKKL7rNkVE2XjCRJQqsvB7A1+R5Gm438uHHjmDZtGgDbtm3j5Zdf5qijjmLmzJnccsstPP3003z66aesWrWqo9qalm3rv8T7r5s4teJ+Kl68C7ViOyJFTFk4qjGUMgCUNtRv7Qqsebl70lhBX8dlMfKtQdKrBnYYSsEwHGNnEvnqDbSGyrTraRrky3oysBw5SP63L3WLZOMPRvG6dUFA3f01uLxIWQVd3g6b9LQ7d82mTZu47LLLuPbaaxk9ejR/+MMfzO8uuOACnn/+ec4888yM91dY2PpJFKERA9lZMo6tpbXsX/kdjc/+AsnlwTd6Gt4xB+EZOg5X8Qg0ITg48hFKVj4DpxyK7PK0+rc6G+tbRVFxNh5X708vVFzc82c/FhToNUojqsDtdqRtc/Jyl0vB4VA6tI+ReUvZ9afP0D56nJKzlqUM6QxFVPIkfYB2S6SY0TvfwfF1MQXHnJPx73REm0NRjQG5HgZ4Veq3riF3xjyKBua3e7+tpTdcY5nS0X1plwVZs2YNV155JcuWLWPhwoVs3LiRbdu2MW/ePCAW4uVo3U9UVja0eiDLnVvCrB8u47d/+ZgXv93Bz2dp7Nm0gXE7vsH/zYcAuKYtYngwTLGyG8eh36OyNgJEWvU7XYHVGausaOhRUlJbKC7Ooby8vrub0SLBRr0sZDAcJRpRU7Y5VV/UqEYoFOngPnpxHXwagQ/+zt4PXsM5rmnq62A4Sq6sG/mHG47hmknb4P1VhLKH4hg5vcVf6KjzUl7VSJZbYd/ql0GLou53ZJef795yjWVCW/oiy1KzznGb5Zq9e/dy+eWXc8cdd7Bw4UJAN+q33HILtbW1RCIRnnrqqS6NrJk6tojKkJOHNhVz7+5pvDfmKqqPWcZm74GEv3iJU+Q3qXcU4Jx4dJe1qbU4LIKwnbum64hr8lrrJkPJ7Z/xmrI9+89BHjiW4OrH0fzVTb4XAnLlABoyDcJD2bhTkItGEfjPn1Br9nR8g9JQ5w+Tn+UksuFtlCGTuqVspk3ztNnIP/TQQ4RCIW699VZOPvlkTj75ZD7//HMuvfRSzjnnHBYuXMikSZNYtGhRR7a3WcYPzwNg8249f8ZLH+7g5md3cc/uafhHHIlLUtlQeByS3HO9YyXByHdjQ/oZhiYPrXu4ynRO+KIky3iOvhjUKIFXftckdl4Tgly5kaDiQyChSU68cy5Hkh00/nOlPuGvC6htDDOGHYiGSpyTj+uS37RpHW2Wa5YvX87y5ctTfnfeeee1uUHtIcfnYmhxFrvL/UwbW4Q/GKEhEGFvZSPfDjqRl9YP5NDxk7qlbZmi9KCY/f6EM8HIZ75dR+SuSYcyYAjeEy4n8OrvCLx5H955P0WS9VtWCMiTAoQU/TVdEwI5pwTfKTcSeOV3BP51B57jLuWN8kFMGDGA0UNal6veyvotlVTWBZk9bWjC8lBEJRRWGRbZBk4PjlEty0Q2XU+fm/E6YXg+AMcfPIzrz5/Biu8fiiJL7KsKUBHNwuXs2V1WLFWp7OiariPByLdiu47IQtkcjhFTcB+5FHXnlwTfecSMGtM0Qa4cIOTQB+mMOHk5twTfKctRBo4h+J8/UfDpn9ix+pV2teGNNbt4/t2tTZbX+fVxjNxIBXLBMPMBZNOz6NkWrw0cceBgpowpZNxQXbpRZJmifC+7yvViBi5Hz5VqIClO3rbxXYazrXKN3HGTodLhmnQMroNPJbrpfYJv3IeIhBBCN/Jhh+7JWyOGJZcP77yfIgZNpkSpZUbVywTfeQgRDbfp92sbwtT6w03CS3UjL/AGS1EGDE29sU230+cevfsNzuWqM6YmLBs4wMuOUn3Eusd78ha5xrbxXUd75JquiE93TT8JyeEm9NFTNL5QhjjwVHLkIKXORE/ebJc7i5pDLuXX6z9iScHXHLnxXSJb1+CceDSuA+ZAK8L0avwhACrrgjQGo7z35V5GDsohz+ciRwqiRBqRC3pGJlebpvQ5I5+KkgFe1m3WJ5ZYb+aeiFWusaNrug7rG15ri4Z0RUoBSZJwTZmPnD+EwH/+iPL23QCEnfob6xtrdjF5VAEDctzmNnWNYQQyz9VO4YTz5hHd8BaRL18lsu4Vdg+bgLz/iSgjpjbbX00TpixTWRvk9U938eWWShyKxDnHj2Owokf+yLYn32Pp2Ravgxg4wGd+7i1yjW3eu5a2evJyJw68psIxYgrZ591J+dQLebzhcAKDpwGwfV89//l8d8K6hnGOqhqNuaPwHv8jss68FdehZ6LWVRJ49Xc0PvdLIt++nzJME2IPilj/ymoCfLurBpdDJqoKvttdyxBHDWAb+Z5Mv/DkhxVnmZ97vFxjaPK2le9S2qzJd5FcY0VyuHm3ehBrhcSpYwfDm9sBTEnSoM4fn+xXURtk6956igdkU559KGNOOQHP9o8IffocwbcfBEnBMXYmztEHIxeNQs4awLZ9dXyzvUb/TQSffVsO4QDnT/Szfdtu6rftYq73S+TC4Ujetkfv2HQu/cLIjx2WZ37u8Z58TJO3I2u6Fj3JFm0o/6fnkelKVE3js2/LmTq2MOF63ravHiEEH35dSlVdkJ1lDeZ3+6oa+durGynI9VBRE2BwURY3X3gkWeMOZ/s3G8na8xGerR8S3fQ+QpJxjpzG9u1hGholrsgpZZSjgtpqHzkDArjKVKbGXo6DkhfvCT+xpcUeTL8w8oosU5TnoaI22OM9ZDsLZfcgSRIuh0Ko1QnKJESHpihrmW931FDfGOHgCSVkeRxIEgwtymJXuZ/Pvq3gwRe/NtfN9jppCET45JsyIlGN0qpGAHaVNfDxN6UcOnEgv3uzilzf/tx8/pnc+8hrHChv5qCy7UxU65nqiRAWDj4Ij8dDGMWbzZGLT+LXz2wFfxXHHDOD2XkDu7T/Nq2jXxh5gPPnjud3/1jHIIs+3xMxBl5tx6jrcTpkQhG1VW9RhvffVgKhKB99XYrHrXDoxIHIGTzkP91Yjsspc+CYQlxOhYeuPY5Nu2r4zWOf8ddXviHb62RwoY9Nu2opzvfidsp8ubkSCRhU6GP/UQVs3lvHo69upLo+RJ0/TJ0/zKdbGviiJo8vOIi9o4fxxqe78EohNCFx7GFjeX39Pm4882CUXA85RQ2sr1MYu5+dxqCn02+M/JQxRTx07bE9/rXSkGt6ejv7InlZLhoCkVa97fncDmobQkRVjTp/mKr6EIW5HipqA4wblk+dP8yeCj8TLYVpGoMRtuytY/9RBbzw/lZe/XgnAF9vrea8ueP5bnctk0cOQJL0UpCffVuOpgmmjy/my82VrNlYxpQxRQnFTUaU5JDlcdAQiHDWcWOJqhqbdtUiSzDnkBE8+eYmhpdk88uLDwVAcjq49vfv8o//bMahyERVjcde+9bc31trdjN2WB7f7aoF4Mxjx7LkmDHmA3DiiAFU1gYZUtiznSabfmTkoXcYTrNmZ3cV7ezHHD9jGH97dSMbtqWONEnFlDFFvLtuL+98sYcXV2+j3h8m2+ekvjHCSUeM4sOvSimrCbBg5kiGFPkQAl7/ZCc7yho4ZtoQVn+1j8MmD6Qk38uLq7fx5ZZKav1hLl4wCa/bwQdf7dMHPNEfQrWxiJlZ+ydKJG6Xwv9dfgThqEa218nm3bpx3lfVyDHThvD6JzuZOjZezKMo38v/njud25/8gnFD86isC7JhezUHjC5g085aQhGVBTNH8vKH26mo0fPmWN9wFswcyYmHjegV91R/p18Z+d5AXrYe55yf7W5hTZuO5sgpg/nbqxuZNi7zykYHji7A7VR4/PVvyfU5GTssj72VjUwckc8L72/D61bYf9QAXv5wu7mN0yEzdUwhb3+xB4cicdIRoxhU4EMA//pgG7k+J4/8e4MpA51xzBg8LoXHXv+Wk44YxXEzhpHrczVpi8upmKmpRw7SJzsdNWUILqfCLZfObJIXqSDXw8ofHAZCj/Wvb4yQ43Pyxxe+oqY+xNQxhUwZXZj2zcY28L0DSXRXBeA0tCWfPPSdnNKaEAhFIRwImxV3ejO97byEIyoOh5xSl0/Xl0de3sAX31Xwv+dMZ3BRll5L2CFTURsk2+vE41KorA2ak6ayvE6yPE6q6oI4HHKCwQ6Go2zYVs29z37JkmPGcPgBg8wHfzAcbVURmbb0BfS4eiGEWfe2p9PbrrHm6Ix88raR74HYfemZpOtLZxjFQCjaqQ/5/nBeeiOdYeR7v6toY9PNOJSOn2DXF97ibHoGPXv6p42NjY1Nu7CNvI2NjU0fplOM/IsvvsiCBQuYM2cOjz/+eGf8hI2NjY1NBnS48FdaWspdd93Fs88+i8vl4uyzz+awww5j7NixHf1TNjY2NjYt0OGe/OrVq5k5cyb5+fn4fD7mzZvHK6+0r/yYjY2NjU3b6HAjX1ZWRnFxsfl3SUkJpaWlHf0zNjY2NjYZ0OFyTaqw+9bMjGsu3rMliltR0qynY/elZ2L3pWdi9yU9He7JDxw4kIqKCvPvsrIySkpKOvpnbGxsbGwyoMON/OGHH84HH3xAVVUVgUCA1157jaOPPrqjf8bGxsbGJgM6XK4ZOHAgV199NUuXLiUSibBkyRKmTJnS0T9jY2NjY5MBPS53jY2NjY1Nx2HPeLWxsbHpw9hG3sbGxqYPYxt5Gxsbmz6MbeRtbGxs+jC2kbexsbHpw9hG3sbGxqYP0yeMfG9Pbbx06VIWLlzIySefzMknn8zatWt7VZ8aGhpYtGgRu3btAvQkdYsXL2bu3Lncdddd5nobNmzg9NNPZ968edxwww1Eo9HuanJakvty/fXXM3fuXPPcvP7660D6PvYU7r33XhYuXMjChQu57bbbgN57XlL1pbeel7vvvpsFCxawcOFCHnnkEaALzovo5ezbt08ce+yxorq6Wvj9frF48WKxadOm7m5WxmiaJo444ggRiUTMZb2pT1988YVYtGiR2H///cXOnTtFIBAQs2fPFjt27BCRSERcfPHF4u233xZCCLFw4ULx+eefCyGEuP7668Xjjz/ejS1vSnJfhBBi0aJForS0NGG95vrYE3j//ffFWWedJUKhkAiHw2Lp0qXixRdf7JXnJVVfXnvttV55Xj766CNx9tlni0gkIgKBgDj22GPFhg0bOv289HpPvrenNt6yZQuSJPGDH/yAk046iccee6xX9enpp5/mF7/4hZmfaN26dYwcOZLhw4fjcDhYvHgxr7zyCrt37yYYDDJt2jQATjvttB7Xp+S+NDY2smfPHm688UYWL17MPffcg6ZpafvYUyguLua6667D5XLhdDoZM2YM27Zt65XnJVVf9uzZ0yvPy6GHHsrf/vY3HA4HlZWVqKpKXV1dp5+XXl8tOFVq43Xr1nVji1pHXV0ds2bN4uabbyYYDLJ06VJOPPHEXtOnlStXJvydLtV08vLi4uIel4I6uS+VlZXMnDmTFStW4PP5uOyyy1i1ahU+n69Hp9MeN26c+Xnbtm28/PLLXHDBBb3yvKTqyxNPPMHHH3/c684LgNPp5J577uHhhx9m/vz5XXK/9HpPXrQztXF3M336dG677TZ8Ph8FBQUsWbKEe+65p8l6vaVP6c5HbzxPw4cP5w9/+AOFhYV4vV4uuOAC3nnnnV7Tl02bNnHxxRdz7bXXMmLEiCbf96bzYu3L6NGje/V5ufLKK/nggw/Yu3cv27Zta/J9R5+XXm/ke3tq408//ZQPPvjA/FsIwdChQ3ttn9Kdj+Tl5eXlPb5PGzdu5NVXXzX/FkLgcDh6xTW3Zs0aLrzwQn7+859z6qmn9urzktyX3npeNm/ezIYNGwDwer3MnTuXjz76qNPPS6838r09tXF9fT233XYboVCIhoYGnnvuOW6//fZe26epU6eydetWtm/fjqqqvPTSSxx99NEMHToUt9vNmjVrAHj++ed7fJ+EENxyyy3U1tYSiUR46qmnmDNnTto+9hT27t3L5Zdfzh133MHChQuB3nteUvWlt56XXbt2sXz5csLhMOFwmDfffJOzzz67089Lr9fke3tq42OPPZa1a9dyyimnoGka5557LjNmzOi1fXK73dx6661cccUVhEIhZs+ezfz58wG44447WL58OX6/n8mTJ7N06dJubm3zTJw4kUsvvZRzzjmHaDTK3LlzWbRoEUDaPvYEHnroIUKhELfeequ57Oyzz+6V5yVdX3rjeZk9e7Z5ryuKwty5c1m4cCEFBQWdel7sVMM2NjY2fZheL9fY2NjY2KTHNvI2NjY2fRjbyNvY2Nj0YWwjb2NjY9OHsY28jY2NTR/GNvI2Nin4wQ9+wHfffdeqbS677DKeffbZTmqRjU3b6PVx8jY2ncGDDz7Y3U2wsekQbCNv06d46623uP/++4lEIng8Hq699lree+89Nm3aREVFBZWVlUycOJGVK1eSnZ3NE088wZNPPonT6cTtdrNixQrGjh3Lcccdx913382BBx7IU089xaOPPoosyxQVFXHjjTey3377UVpaynXXXUdZWRlDhgyhsrLSbMfmzZtZuXIlNTU1qKrKBRdcwJIlS/D7/Vx//fVs374dWZbZf//9WbFiBbJsv1TbdBJtz45sY9Oz2Lp1q1i0aJGoqqoSQgjx7bffiiOOOELceuut4uijjxbl5eVCVVXxs5/9TNx6660iGo2K/fff38xL/txzz4knn3xSCCHEscceK9atWydWr14tTjjhBFFZWSmEEOKZZ54RJ554otA0Tfz4xz8Wd911lxBCiG3btolp06aJZ555RkQiEbFgwQKxfv16IYQQdXV14sQTTxSff/65eO6558TFF18shBAiGo2KG264QWzbtq0rD5NNP8P25G36DO+//z5lZWVceOGF5jJJktixYwfz58+nqKgIgCVLlnDLLbdw7bXXMn/+fM4++2yOOeYYjjjiCBYvXpywz3fffZcFCxZQUFAA6Hm9V65cya5du1i9ejXXXnstACNHjuSwww4D9JS4O3bsYNmyZeZ+gsEgX3/9NUcddRR33XUXF1xwAYcffjjf+973GDlyZGceFpt+jm3kbfoMmqYxa9Ysfve735nL9u7dy1NPPUU4HE5Yz5BH7rjjDr799ltWr17Ngw8+yKpVq7j//vvNdUWKrB9CCKLRaJOUsA6Hfjupqkpubi7//Oc/ze8qKirIycnB7Xbz+uuv89FHH/Hhhx9y0UUXsXz58h6VY8Wmb2ELgTZ9hpkzZ/L++++zefNmAN555x1OOukkQqEQb775JvX19WiaxtNPP82xxx5LVVUVs2fPJj8/nwsvvJCrrrqKjRs3JuzzyCOP5OWXX6aqqgqAZ555hvz8fEaOHMlRRx3FU089BcCePXv46KOPANhvv/1wu92mkd+7dy+LFi1i/fr1PPHEE1x//fUceeSRXHPNNRx55JFs2rSpqw6RTT/ETlBm06f497//zQMPPGDmGF+2bBkffPABH374IaqqUl1dzSGHHMLy5cvxeDw8+eST/O1vf8Pj8aAoCldffTWHH354wsDr448/zpNPPommaRQUFHDTTTcxbtw4qqqquP7669mxYweDBg0iGo1y6qmnctppp/HNN9+YA6/RaJSlS5dyzjnn0NjYyLJly9i4cSNer5chQ4awcuVK8vLyuvvQ2fRRbCNv0+f5/e9/T3V1NTfddFN3N8XGpsux5RobGxubPoztydvY2Nj0YWxP3sbGxqYPYxt5Gxsbmz6MbeRtbGxs+jC2kbexsbHpw9hG3sbGxqYPYxt5Gxsbmz7M/wMcC4nelkepKAAAAABJRU5ErkJggg==\n"
|
||
},
|
||
"metadata": {}
|
||
}
|
||
],
|
||
"source": [
|
||
"env = gym.make('CartPole-v0')\n",
|
||
"env.seed(1)\n",
|
||
"cfg = HierarchicalDQNConfig()\n",
|
||
"state_dim = env.observation_space.shape[0]\n",
|
||
"action_dim = env.action_space.n\n",
|
||
"agent = HierarchicalDQN(state_dim, action_dim, cfg)\n",
|
||
"rewards, ma_rewards = train(cfg, env, agent)\n",
|
||
"agent.save(path=SAVED_MODEL_PATH)\n",
|
||
"save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH)\n",
|
||
"plot_rewards(rewards, ma_rewards, tag=\"train\",\n",
|
||
" algo=cfg.algo, path=RESULT_PATH)"
|
||
]
|
||
}
|
||
]
|
||
} |