119 lines
4.8 KiB
Python
119 lines
4.8 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-11 17:59:16
|
||
LastEditor: John
|
||
LastEditTime: 2022-08-04 22:28:51
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import datetime
|
||
import argparse
|
||
from envs.racetrack_env import RacetrackEnv
|
||
from Sarsa.sarsa import Sarsa
|
||
from common.utils import save_results,make_dir,plot_rewards,save_args
|
||
|
||
def get_args():
|
||
""" 超参数
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='Sarsa',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training") # 训练的回合数
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
|
||
parser.add_argument('--ep_max_steps',default=200,type=int) # 每回合最大的部署
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子
|
||
parser.add_argument('--epsilon_start',default=0.90,type=float,help="initial value of epsilon") # e-greedy策略中初始epsilon
|
||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
|
||
parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
|
||
parser.add_argument('--lr',default=0.2,type=float,help="learning rate")
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' ) # path to save models
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = RacetrackEnv()
|
||
n_actions = 9 # 动作数
|
||
agent = Sarsa(n_actions,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
action = agent.sample(state)
|
||
ep_reward = 0
|
||
# while True:
|
||
for _ in range(cfg.ep_max_steps):
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward+=reward
|
||
next_action = agent.sample(next_state)
|
||
agent.update(state, action, reward, next_state, next_action,done)
|
||
state = next_state
|
||
action = next_action
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
if (i_ep+1)%2==0:
|
||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}")
|
||
print('完成训练!')
|
||
return {"rewards":rewards}
|
||
|
||
def test(cfg,env,agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = []
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
# while True:
|
||
for _ in range(cfg.ep_max_steps):
|
||
action = agent.predict(state)
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward+=reward
|
||
state = next_state
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}")
|
||
print('完成测试!')
|
||
return {"rewards":rewards}
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
save_args(cfg) # save parameters
|
||
agent.save(path=cfg.model_path) # save model
|
||
save_results(res_dic, tag='train',
|
||
path=cfg.result_path)
|
||
plot_rewards(res_dic['rewards'], cfg, tag="train")
|
||
# 测试
|
||
env, agent = env_agent_config(cfg)
|
||
agent.load(path=cfg.model_path) # 导入模型
|
||
res_dic = test(cfg, env, agent)
|
||
save_results(res_dic, tag='test',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果
|
||
|
||
|
||
|