48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-12 21:14:12
|
||
LastEditor: John
|
||
LastEditTime: 2021-03-13 13:48:35
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
class MLP1(nn.Module):
|
||
''' 多层感知机
|
||
输入:state维度
|
||
输出:概率
|
||
'''
|
||
def __init__(self,n_states,hidden_dim = 36):
|
||
super(MLP1, self).__init__()
|
||
# 24和36为hidden layer的层数,可根据state_dim, n_actions的情况来改变
|
||
self.fc1 = nn.Linear(n_states, hidden_dim)
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
|
||
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left
|
||
|
||
def forward(self, x):
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
x = F.sigmoid(self.fc3(x))
|
||
return x
|
||
|
||
|
||
class MLP2(nn.Module):
|
||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||
""" 初始化q网络,为全连接网络
|
||
n_states: 输入的feature即环境的state数目
|
||
n_actions: 输出的action总个数
|
||
"""
|
||
super(MLP2, self).__init__()
|
||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||
|
||
def forward(self, x):
|
||
# 各层对应的激活函数
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
return self.fc3(x) |