Files
easy-rl/projects/codes/Sarsa/task0.py
2022-11-06 12:15:36 +08:00

107 lines
4.4 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2022-09-19 14:48:16
LastEditor: JiangJi
LastEditTime: 2022-10-30 02:11:31
Discription:
'''
import sys,os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import gym
import datetime
import argparse
from envs.register import register_env
from envs.wrappers import CliffWalkingWapper
from Sarsa.sarsa import Sarsa
from common.utils import all_seed,merge_class_attrs
from common.launcher import Launcher
from config.config import GeneralConfigSarsa,AlgoConfigSarsa
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigSarsa())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigSarsa())
def env_agent_config(self,cfg,logger):
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=False) # create env
if cfg.env_name == 'CliffWalking-v0':
env = CliffWalkingWapper(env)
if cfg.seed !=0: # set random seed
all_seed(env,seed=cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
agent = Sarsa(cfg)
return env,agent
def train(self,cfg,env,agent,logger):
logger.info("Start training!")
logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
rewards = [] # record rewards for all episodes
steps = [] # record steps for all episodes
for i_ep in range(cfg.train_eps):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
state = env.reset() # reset and obtain initial state
action = agent.sample_action(state)
# while True:
for _ in range(cfg.max_steps):
next_state, reward, done, _ = env.step(action) # update env and return transitions
next_action = agent.sample_action(next_state)
agent.update(state, action, reward, next_state, next_action,done) # update agent
state = next_state # update state
action = next_action
ep_reward += reward
ep_step += 1
if done:
break
rewards.append(ep_reward)
steps.append(ep_step)
logger.info(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step:d}, Epislon: {agent.epsilon:.3f}')
logger.info("Finish training!")
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
def test(self,cfg,env,agent,logger):
logger.info("Start testing!")
logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
rewards = [] # record rewards for all episodes
steps = [] # record steps for all episodes
for i_ep in range(cfg.test_eps):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward+=reward
ep_step+=1
if done:
break
rewards.append(ep_reward)
steps.append(ep_step)
logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step:d}")
logger.info("Finish testing!")
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
main = Main()
main.run()