119 lines
3.9 KiB
Python
119 lines
3.9 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-11 14:26:44
|
||
LastEditor: John
|
||
LastEditTime: 2021-05-05 17:27:50
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
|
||
import sys,os
|
||
curr_path = os.path.dirname(__file__)
|
||
parent_path = os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import torch
|
||
import datetime
|
||
|
||
from common.utils import save_results,make_dir
|
||
from common.plot import plot_rewards
|
||
from MonteCarlo.agent import FisrtVisitMC
|
||
from envs.racetrack_env import RacetrackEnv
|
||
|
||
curr_time = datetime.datetime.now().strftime(
|
||
"%Y%m%d-%H%M%S") # obtain current time
|
||
|
||
class MCConfig:
|
||
def __init__(self):
|
||
self.algo = "MC" # name of algo
|
||
self.env = 'Racetrack'
|
||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||
'/'+curr_time+'/results/' # path to save results
|
||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||
'/'+curr_time+'/models/' # path to save models
|
||
# epsilon: The probability to select a random action .
|
||
self.epsilon = 0.15
|
||
self.gamma = 0.9 # gamma: Gamma discount factor.
|
||
self.train_eps = 200
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = RacetrackEnv()
|
||
n_actions = 9
|
||
agent = FisrtVisitMC(n_actions, cfg)
|
||
return env,agent
|
||
|
||
def train(cfg, env, agent):
|
||
print('Start to eval !')
|
||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||
rewards = []
|
||
ma_rewards = [] # moving average rewards
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
one_ep_transition = []
|
||
while True:
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward += reward
|
||
one_ep_transition.append((state, action, reward))
|
||
state = next_state
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
agent.update(one_ep_transition)
|
||
if (i_ep+1) % 10 == 0:
|
||
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
||
print('Complete training!')
|
||
return rewards, ma_rewards
|
||
|
||
def eval(cfg, env, agent):
|
||
print('Start to eval !')
|
||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||
rewards = []
|
||
ma_rewards = [] # moving average rewards
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
while True:
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward += reward
|
||
state = next_state
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
if (i_ep+1) % 10 == 0:
|
||
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
||
return rewards, ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = MCConfig()
|
||
|
||
# train
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
agent.save(path=cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, tag="train",
|
||
algo=cfg.algo, path=cfg.result_path)
|
||
# eval
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=cfg.model_path)
|
||
rewards,ma_rewards = eval(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|