145 lines
5.8 KiB
Python
145 lines
5.8 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: JiangJi
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-11-07 18:10:37
|
||
LastEditor: JiangJi
|
||
LastEditTime: 2021-12-29 15:02:30
|
||
Discription:
|
||
'''
|
||
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
|
||
from common.utils import save_results, make_dir
|
||
from common.utils import plot_rewards
|
||
from DoubleDQN.double_dqn import DoubleDQN
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
|
||
class Config:
|
||
def __init__(self):
|
||
################################## 环境超参数 ###################################
|
||
self.algo_name = 'DoubleDQN' # 算法名称
|
||
self.env_name = 'CartPole-v0' # 环境名称
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||
self.train_eps = 200 # 训练的回合数
|
||
self.test_eps = 30 # 测试的回合数
|
||
################################################################################
|
||
|
||
################################## 算法超参数 ###################################
|
||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||
self.lr = 0.0001 # 学习率
|
||
self.memory_capacity = 100000 # 经验回放的容量
|
||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||
self.target_update = 2 # 目标网络的更新频率
|
||
self.hidden_dim = 256 # 网络隐藏层
|
||
################################################################################
|
||
|
||
################################# 保存结果相关参数 ##############################
|
||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/results/' # 保存结果的路径
|
||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/models/' # 保存模型的路径
|
||
self.save = True # 是否保存图片
|
||
################################################################################
|
||
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = gym.make(cfg.env_name)
|
||
env.seed(seed)
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = DoubleDQN(n_states,n_actions,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
while True:
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
state = next_state
|
||
agent.update()
|
||
if done:
|
||
break
|
||
if i_ep % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
if (i_ep+1)%10 == 0:
|
||
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}')
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('完成训练!')
|
||
env.close()
|
||
return rewards,ma_rewards
|
||
|
||
def test(cfg,env,agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||
################################################################################
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
while True:
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||
print('完成测试!')
|
||
env.close()
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = Config()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||
agent.save(path=cfg.model_path) # 保存模型
|
||
save_results(rewards, ma_rewards, tag='train',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||
# 测试
|
||
env, agent = env_agent_config(cfg)
|
||
agent.load(path=cfg.model_path) # 导入模型
|
||
rewards, ma_rewards = test(cfg, env, agent)
|
||
save_results(rewards, ma_rewards, tag='test',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果
|