181 lines
7.6 KiB
Python
181 lines
7.6 KiB
Python
import sys
|
||
import os
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import numpy as np
|
||
from common.utils import save_results_1, make_dir
|
||
from common.utils import plot_rewards
|
||
from dqn_1 import DQN
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, n_states,n_actions,hidden_dim=256):
|
||
""" 初始化q网络,为全连接网络
|
||
n_states: 输入的特征数即环境的状态维度
|
||
n_actions: 输出的动作维度
|
||
"""
|
||
super(MLP, self).__init__()
|
||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc3 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc4 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||
|
||
def forward(self, x):
|
||
# 各层对应的激活函数
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
x = F.relu(self.fc3(x))
|
||
return self.fc4(x)
|
||
|
||
class Config:
|
||
'''超参数
|
||
'''
|
||
|
||
def __init__(self):
|
||
################################## 环境超参数 ###################################
|
||
self.algo_name = 'DQN' # 算法名称
|
||
# self.env_name = 'Breakout-ram-v0' # 环境名称
|
||
self.env_name = 'ALE/Pong-ram-v5'
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
|
||
self.seed = 10 # 随机种子,置0则不设置随机种子
|
||
self.train_eps = 5 # 训练的回合数
|
||
self.test_eps = 30 # 测试的回合数
|
||
################################################################################
|
||
|
||
################################## 算法超参数 ###################################
|
||
self.gamma = 0.99 # 强化学习中的折扣因子
|
||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||
self.epsilon_decay = 500000 # e-greedy策略中epsilon的衰减率
|
||
self.lr = 0.00025 # 学习率
|
||
self.memory_capacity = int(5e4) # 经验回放的容量
|
||
self.batch_size = 32 # mini-batch SGD中的批量大小
|
||
self.target_update = 4 # 目标网络的更新频率
|
||
self.hidden_dim = 512 # 网络隐藏层
|
||
################################################################################
|
||
|
||
################################# 保存结果相关参数 ################################
|
||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/results/' # 保存结果的路径
|
||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/models/' # 保存模型的路径
|
||
self.save = True # 是否保存图片
|
||
################################################################################
|
||
|
||
|
||
def env_agent_config(cfg):
|
||
''' 创建环境和智能体
|
||
'''
|
||
env = gym.make(cfg.env_name) # 创建环境
|
||
n_states = env.observation_space.shape[0] # 状态维度
|
||
n_actions = env.action_space.n # 动作维度
|
||
print(f"n states: {n_states}, n actions: {n_actions}")
|
||
model = MLP(n_states,n_actions)
|
||
agent = DQN(n_states, n_actions, model, cfg) # 创建智能体
|
||
if cfg.seed !=0: # 设置随机种子
|
||
torch.manual_seed(cfg.seed)
|
||
env.seed(cfg.seed)
|
||
np.random.seed(cfg.seed)
|
||
return env, agent
|
||
|
||
|
||
def train(cfg, env, agent):
|
||
''' 训练
|
||
'''
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
steps = []
|
||
for i_ep in range(cfg.train_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
ep_step = 0
|
||
while True:
|
||
ep_step+=1
|
||
action = agent.choose_action(state) # 选择动作
|
||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||
agent.memory.push(state, action, reward,
|
||
next_state, done) # 保存transition
|
||
state = next_state # 更新下一个状态
|
||
agent.update() # 更新智能体
|
||
ep_reward += reward # 累加奖励
|
||
if done:
|
||
break
|
||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
if (i_ep + 1) % 1 == 0:
|
||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Epislon:{agent.epsilon(agent.frame_idx):.3f}')
|
||
print('完成训练!')
|
||
env.close()
|
||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||
return res_dic
|
||
|
||
|
||
def test(cfg, env, agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||
################################################################################
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
steps = []
|
||
for i_ep in range(cfg.test_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
ep_step = 0
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
while True:
|
||
ep_step+=1
|
||
action = agent.choose_action(state) # 选择动作
|
||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||
state = next_state # 更新下一个状态
|
||
ep_reward += reward # 累加奖励
|
||
if done:
|
||
break
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||
print('完成测试!')
|
||
env.close()
|
||
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||
|
||
|
||
if __name__ == "__main__":
|
||
cfg = Config()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||
agent.save(path=cfg.model_path) # 保存模型
|
||
save_results_1(res_dic, tag='train',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||
# 测试
|
||
env, agent = env_agent_config(cfg)
|
||
agent.load(path=cfg.model_path) # 导入模型
|
||
res_dic = test(cfg, env, agent)
|
||
save_results_1(res_dic, tag='test',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|