Files
easy-rl/projects/codes/DQN/dqn.py
johnjim0816 ad65dd17cd hot update
2022-08-22 17:50:11 +08:00

113 lines
5.3 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2022-08-18 14:27:18
@Discription:
@Environment: python 3.7.7
'''
'''off-policy
'''
import torch
import torch.nn as nn
import torch.optim as optim
import random
import math
import numpy as np
class DQN:
def __init__(self,n_actions,model,memory,cfg):
self.n_actions = n_actions
self.device = torch.device(cfg.device)
self.gamma = cfg.gamma
## e-greedy parameters
self.sample_count = 0 # sample count for epsilon decay
self.epsilon = cfg.epsilon_start
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = model.to(self.device)
self.target_net = model.to(self.device)
## copy parameters from policy net to target net
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
target_param.data.copy_(param.data)
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.memory = memory
self.update_flag = False
def sample_action(self, state):
''' sample action with e-greedy policy
'''
self.sample_count += 1
# epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
if random.random() > self.epsilon:
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
else:
action = random.randrange(self.n_actions)
return action
def predict_action(self,state):
''' predict action
'''
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
return action
def update(self):
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
return
else:
if not self.update_flag:
print("begin to update!")
self.update_flag = True
# sample a batch of transitions from replay buffer
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize)
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
# print(state_batch.shape,action_batch.shape,reward_batch.shape,next_state_batch.shape,done_batch.shape)
# compute current Q(s_t,a), it is 'y_j' in pseucodes
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
# print(q_values.requires_grad)
# compute max(Q(s_t+1,A_t+1)) respects to actions A, next_max_q_value comes from another net and is just regarded as constant for q update formula below, thus should detach to requires_grad=False
next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
# print(q_values.shape,next_q_values.shape)
# compute expected q value, for terminal state, done_batch[0]=1, and expected_q_value=rewardcorrespondingly
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch)
# print(expected_q_value_batch.shape,expected_q_value_batch.requires_grad)
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
# backpropagation
self.optimizer.zero_grad()
loss.backward()
# clip to avoid gradient explosion
for param in self.policy_net.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
def save_model(self, path):
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(self.target_net.state_dict(), f"{path}/checkpoint.pt")
def load_model(self, path):
self.target_net.load_state_dict(torch.load(f"{path}/checkpoint.pt"))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)