132 lines
5.4 KiB
Python
132 lines
5.4 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2020-11-22 23:21:53
|
||
LastEditor: John
|
||
LastEditTime: 2022-08-27 00:04:08
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||
parent_path = os.path.dirname(curr_path) # parent path
|
||
sys.path.append(parent_path) # add to system path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import argparse
|
||
from itertools import count
|
||
import torch.nn.functional as F
|
||
from pg import PolicyGradient
|
||
from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards
|
||
from common.models import MLP
|
||
from common.memories import PGReplay
|
||
from common.launcher import Launcher
|
||
from envs.register import register_env
|
||
|
||
|
||
class PGNet(MLP):
|
||
''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here
|
||
'''
|
||
def forward(self, x):
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
x = torch.sigmoid(self.fc3(x))
|
||
return x
|
||
|
||
class Main(Launcher):
|
||
def get_args(self):
|
||
""" Hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||
parser.add_argument('--lr',default=0.01,type=float,help="learning rate")
|
||
parser.add_argument('--update_fre',default=8,type=int)
|
||
parser.add_argument('--hidden_dim',default=36,type=int)
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--seed',default=1,type=int,help="seed")
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||
args = parser.parse_args()
|
||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||
}
|
||
args = {**vars(args),**default_args} # type(dict)
|
||
return args
|
||
def env_agent_config(self,cfg):
|
||
register_env(cfg['env_name'])
|
||
env = gym.make(cfg['env_name'])
|
||
if cfg['seed'] !=0: # set random seed
|
||
all_seed(env,seed=cfg['seed'])
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n # action dimension
|
||
print(f"state dim: {n_states}, action dim: {n_actions}")
|
||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||
model = PGNet(n_states,1,hidden_dim=cfg['hidden_dim'])
|
||
memory = PGReplay()
|
||
agent = PolicyGradient(model,memory,cfg)
|
||
return env,agent
|
||
def train(self,cfg,env,agent):
|
||
print("Start training!")
|
||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||
rewards = []
|
||
for i_ep in range(cfg['train_eps']):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for _ in range(cfg['ep_max_steps']):
|
||
action = agent.sample_action(state) # sample action
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
if done:
|
||
reward = 0
|
||
agent.memory.push((state,float(action),reward))
|
||
state = next_state
|
||
if done:
|
||
break
|
||
if (i_ep+1) % 10 == 0:
|
||
print(f"Episode:{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}")
|
||
if (i_ep+1) % cfg['update_fre'] == 0:
|
||
agent.update()
|
||
rewards.append(ep_reward)
|
||
print('Finish training!')
|
||
env.close() # close environment
|
||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||
return res_dic
|
||
|
||
def test(self,cfg,env,agent):
|
||
print("Start testing!")
|
||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||
rewards = []
|
||
for i_ep in range(cfg['test_eps']):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for _ in range(cfg['ep_max_steps']):
|
||
action = agent.predict_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
if done:
|
||
reward = 0
|
||
state = next_state
|
||
if done:
|
||
break
|
||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||
rewards.append(ep_reward)
|
||
print("Finish testing!")
|
||
env.close()
|
||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||
|
||
if __name__ == "__main__":
|
||
main = Main()
|
||
main.run()
|
||
|
||
|