Files
easy-rl/codes/ddpg/agent.py
JohnJim0816 bf0f2990cf update
2021-03-23 16:10:11 +08:00

93 lines
3.6 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-09 20:25:52
@LastEditor: John
LastEditTime: 2021-03-17 20:43:25
@Discription:
@Environment: python 3.7.7
'''
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from common.model import Actor, Critic
from common.memory import ReplayBuffer
class DDPG:
def __init__(self, n_states, n_actions, cfg):
self.device = cfg.device
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
target_param.data.copy_(param.data)
self.critic_optimizer = optim.Adam(
self.critic.parameters(), lr=cfg.critic_lr)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
self.batch_size = cfg.batch_size
self.soft_tau = cfg.soft_tau
self.gamma = cfg.gamma
def choose_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action = self.actor(state)
# torch.detach()用于切断反向传播
return action.detach().cpu().numpy()[0, 0]
def update(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.memory.sample(
self.batch_size)
# 将所有变量转为张量
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
# 注意critic将(s_t,a)作为输入
policy_loss = self.critic(state, self.actor(state))
policy_loss = -policy_loss.mean()
next_action = self.target_actor(next_state)
target_value = self.target_critic(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * self.gamma * target_value
expected_value = torch.clamp(expected_value, -np.inf, np.inf)
value = self.critic(state, action)
value_loss = nn.MSELoss()(value, expected_value.detach())
self.actor_optimizer.zero_grad()
policy_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
value_loss.backward()
self.critic_optimizer.step()
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) +
param.data * self.soft_tau
)
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - self.soft_tau) +
param.data * self.soft_tau
)
def save(self,path):
torch.save(self.target_net.state_dict(), path+'DDPG_checkpoint.pth')
def load(self,path):
self.actor.load_state_dict(torch.load(path+'DDPG_checkpoint.pth'))