94 lines
4.0 KiB
Python
94 lines
4.0 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:48:57
|
||
@LastEditor: John
|
||
LastEditTime: 2021-03-26 17:17:17
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
from DQN.agent import DQN
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||
os.mkdir(RESULT_PATH)
|
||
|
||
class DQNConfig:
|
||
def __init__(self):
|
||
self.algo = "DQN" # 算法名称
|
||
self.gamma = 0.99
|
||
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
|
||
self.epsilon_end = 0.01
|
||
self.epsilon_decay = 200
|
||
self.lr = 0.01 # 学习率
|
||
self.memory_capacity = 800 # Replay Memory容量
|
||
self.batch_size = 64
|
||
self.train_eps = 300 # 训练的episode数目
|
||
self.train_steps = 200 # 训练每个episode的最大长度
|
||
self.target_update = 2 # target net的更新频率
|
||
self.eval_eps = 20 # 测试的episode数目
|
||
self.eval_steps = 200 # 测试每个episode的最大长度
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
self.hidden_dim = 128 # 神经网络隐藏层维度
|
||
|
||
def train(cfg,env,agent):
|
||
print('Start to train !')
|
||
rewards = []
|
||
ma_rewards = [] # 滑动平均的reward
|
||
ep_steps = []
|
||
for i_episode in range(cfg.train_eps):
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(cfg.train_steps):
|
||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||
state = next_state # 跳转到下一个状态
|
||
agent.update() # 每步更新网络
|
||
if done:
|
||
break
|
||
# 更新target network,复制DQN中的所有weights and biases
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done))
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete training!')
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = DQNConfig()
|
||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
state_dim = env.observation_space.shape[0]
|
||
action_dim = env.action_space.n
|
||
agent = DQN(state_dim,action_dim,cfg)
|
||
rewards,ma_rewards = train(cfg,env,agent)
|
||
agent.save(path=SAVED_MODEL_PATH)
|
||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|