141 lines
5.7 KiB
Python
141 lines
5.7 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-11 20:58:21
|
||
@LastEditor: John
|
||
LastEditTime: 2022-06-09 19:05:20
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||
|
||
import datetime
|
||
import gym
|
||
import torch
|
||
|
||
from env import NormalizedActions,OUNoise
|
||
from ddpg import DDPG
|
||
from common.utils import save_results,make_dir
|
||
from common.utils import plot_rewards
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
class Config:
|
||
'''超参数
|
||
'''
|
||
|
||
def __init__(self):
|
||
################################## 环境超参数 ###################################
|
||
self.algo_name = 'DDPG' # 算法名称
|
||
self.env_name = 'Pendulum-v1' # 环境名称,gym新版本(约0.21.0之后)中Pendulum-v0改为Pendulum-v1
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
|
||
self.seed = 10 # 随机种子,置0则不设置随机种子
|
||
self.train_eps = 300 # 训练的回合数
|
||
self.test_eps = 20 # 测试的回合数
|
||
################################################################################
|
||
|
||
################################## 算法超参数 ###################################
|
||
self.gamma = 0.99 # 折扣因子
|
||
self.critic_lr = 1e-3 # 评论家网络的学习率
|
||
self.actor_lr = 1e-4 # 演员网络的学习率
|
||
self.memory_capacity = 8000 # 经验回放的容量
|
||
self.batch_size = 128 # mini-batch SGD中的批量大小
|
||
self.target_update = 2 # 目标网络的更新频率
|
||
self.hidden_dim = 256 # 网络隐藏层维度
|
||
self.soft_tau = 1e-2 # 软更新参数
|
||
################################################################################
|
||
|
||
################################# 保存结果相关参数 ################################
|
||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/results/' # 保存结果的路径
|
||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||
'/' + curr_time + '/models/' # 保存模型的路径
|
||
self.save = True # 是否保存图片
|
||
################################################################################
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||
env.seed(seed) # 随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.shape[0]
|
||
agent = DDPG(n_states,n_actions,cfg)
|
||
return env,agent
|
||
def train(cfg, env, agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}')
|
||
ou_noise = OUNoise(env.action_space) # 动作噪声
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ou_noise.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
i_step = 0
|
||
while not done:
|
||
i_step += 1
|
||
action = agent.choose_action(state)
|
||
action = ou_noise.get_action(action, i_step)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
agent.update()
|
||
state = next_state
|
||
if (i_ep+1)%10 == 0:
|
||
print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('完成训练!')
|
||
return rewards, ma_rewards
|
||
|
||
def test(cfg, env, agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
i_step = 0
|
||
while not done:
|
||
i_step += 1
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
state = next_state
|
||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||
print('完成测试!')
|
||
return rewards, ma_rewards
|
||
if __name__ == "__main__":
|
||
cfg = Config()
|
||
# 训练
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
agent.save(path=cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||
# 测试
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=cfg.model_path)
|
||
rewards,ma_rewards = test(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果
|
||
|