120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-11 17:59:16
|
||
LastEditor: John
|
||
LastEditTime: 2022-04-29 20:18:13
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path of file
|
||
parent_path = os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import datetime
|
||
import torch
|
||
from envs.racetrack_env import RacetrackEnv
|
||
from Sarsa.sarsa import Sarsa
|
||
from common.utils import save_results,make_dir,plot_rewards
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
|
||
class Config:
|
||
''' parameters for Sarsa
|
||
'''
|
||
def __init__(self):
|
||
self.algo_name = 'Qlearning'
|
||
self.env_name = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check GPU
|
||
self.result_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/results/' # path to save results
|
||
self.model_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/models/' # path to save models
|
||
self.train_eps = 300 # training episodes
|
||
self.test_eps = 20 # testing episodes
|
||
self.n_steps = 200 # maximum steps per episode
|
||
self.epsilon_start = 0.90 # start value of epsilon
|
||
self.epsilon_end = 0.01 # end value of epsilon
|
||
self.epsilon_decay = 200 # decay rate of epsilon
|
||
self.gamma = 0.99 # gamma: Gamma discount factor.
|
||
self.lr = 0.2 # learning rate: step size parameter
|
||
self.save = True # if save figures
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = RacetrackEnv()
|
||
n_states = 9 # number of actions
|
||
agent = Sarsa(n_states,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
rewards = []
|
||
ma_rewards = []
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
action = agent.choose_action(state)
|
||
ep_reward = 0
|
||
# while True:
|
||
for _ in range(cfg.n_steps):
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward+=reward
|
||
next_action = agent.choose_action(next_state)
|
||
agent.update(state, action, reward, next_state, next_action,done)
|
||
state = next_state
|
||
action = next_action
|
||
if done:
|
||
break
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
rewards.append(ep_reward)
|
||
if (i_ep+1)%2==0:
|
||
print(f"Episode:{i_ep+1}, Reward:{ep_reward}, Epsilon:{agent.epsilon}")
|
||
return rewards,ma_rewards
|
||
|
||
def test(cfg,env,agent):
|
||
rewards = []
|
||
ma_rewards = []
|
||
for i_ep in range(cfg.test_eps):
|
||
# Print out which episode we're on, useful for debugging.
|
||
# Generate an episode.
|
||
# An episode is an array of (state, action, reward) tuples
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
while True:
|
||
# for _ in range(cfg.n_steps):
|
||
action = agent.predict_action(state)
|
||
next_state, reward, done = env.step(action)
|
||
ep_reward+=reward
|
||
state = next_state
|
||
if done:
|
||
break
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
rewards.append(ep_reward)
|
||
if (i_ep+1)%1==0:
|
||
print("Episode:{}/{}: Reward:{}".format(i_ep+1, cfg.test_eps,ep_reward))
|
||
print('Complete testing!')
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = Config()
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards,ma_rewards = train(cfg,env,agent)
|
||
make_dir(cfg.result_path,cfg.model_path)
|
||
agent.save(path=cfg.model_path)
|
||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="train")
|
||
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=cfg.model_path)
|
||
rewards,ma_rewards = test(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='test',path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, cfg, tag="test")
|
||
|
||
|
||
|