127 lines
4.5 KiB
Python
127 lines
4.5 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:48:57
|
||
@LastEditor: John
|
||
LastEditTime: 2021-04-29 22:23:38
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(__file__)
|
||
parent_path = os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import datetime
|
||
import torch
|
||
import gym
|
||
|
||
from common.utils import save_results, make_dir, del_empty_dir
|
||
from common.plot import plot_rewards
|
||
from DQN.agent import DQN
|
||
|
||
|
||
|
||
curr_time = datetime.datetime.now().strftime(
|
||
"%Y%m%d-%H%M%S") # obtain current time
|
||
|
||
|
||
class DQNConfig:
|
||
def __init__(self):
|
||
self.algo = "DQN" # name of algo
|
||
self.env = 'CartPole-v0'
|
||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||
'/'+curr_time+'/results/' # path to save results
|
||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||
'/'+curr_time+'/models/' # path to save results
|
||
self.train_eps = 300 # 训练的episode数目
|
||
self.eval_eps = 50 # number of episodes for evaluating
|
||
self.gamma = 0.95
|
||
self.epsilon_start = 0.90 # e-greedy策略的初始epsilon
|
||
self.epsilon_end = 0.01
|
||
self.epsilon_decay = 500
|
||
self.lr = 0.0001 # learning rate
|
||
self.memory_capacity = 100000 # Replay Memory容量
|
||
self.batch_size = 64
|
||
self.target_update = 2 # target net的更新频率
|
||
self.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = gym.make(cfg.env)
|
||
env.seed(seed)
|
||
state_dim = env.observation_space.shape[0]
|
||
action_dim = env.action_space.n
|
||
agent = DQN(state_dim,action_dim,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg, env, agent):
|
||
print('Start to train !')
|
||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||
rewards = []
|
||
ma_rewards = [] # moveing average reward
|
||
for i_episode in range(cfg.train_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while True:
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
state = next_state
|
||
agent.update()
|
||
if done:
|
||
break
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete training!')
|
||
return rewards, ma_rewards
|
||
|
||
def eval(cfg,env,agent):
|
||
rewards = [] # 记录所有episode的reward
|
||
ma_rewards = [] # 滑动平均的reward
|
||
for i_ep in range(cfg.eval_eps):
|
||
ep_reward = 0 # 记录每个episode的reward
|
||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
while True:
|
||
action = agent.predict(state) # 根据算法选择一个动作
|
||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
state = next_state # 存储上一个观察值
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = DQNConfig()
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
agent.save(path=cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, tag="train",
|
||
algo=cfg.algo, path=cfg.result_path)
|
||
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=cfg.model_path)
|
||
rewards,ma_rewards = eval(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|