142 lines
6.4 KiB
Python
142 lines
6.4 KiB
Python
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||
parent_path = os.path.dirname(curr_path) # parent path
|
||
sys.path.append(parent_path) # add path to system path
|
||
|
||
import argparse
|
||
import datetime
|
||
import gym
|
||
import torch
|
||
import random
|
||
import numpy as np
|
||
import torch.nn as nn
|
||
from common.memories import ReplayBufferQue
|
||
from common.models import MLP
|
||
from common.utils import save_results,all_seed,plot_rewards,save_args
|
||
from softq import SoftQ
|
||
|
||
def get_args():
|
||
""" hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='SoftQ',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--max_steps',default=200,type=int,help="maximum steps per episode")
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||
parser.add_argument('--alpha',default=4,type=float,help="alpha")
|
||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||
parser.add_argument('--memory_capacity',default=50000,type=int,help="memory capacity")
|
||
parser.add_argument('--batch_size',default=128,type=int)
|
||
parser.add_argument('--target_update',default=2,type=int)
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' )
|
||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
class SoftQNetwork(nn.Module):
|
||
'''Actually almost same to common.models.MLP
|
||
'''
|
||
def __init__(self,input_dim,output_dim):
|
||
super(SoftQNetwork,self).__init__()
|
||
self.fc1 = nn.Linear(input_dim, 64)
|
||
self.relu = nn.ReLU()
|
||
self.fc2 = nn.Linear(64, 256)
|
||
self.fc3 = nn.Linear(256, output_dim)
|
||
|
||
def forward(self, x):
|
||
x = self.relu(self.fc1(x))
|
||
x = self.relu(self.fc2(x))
|
||
x = self.fc3(x)
|
||
return x
|
||
|
||
def env_agent_config(cfg):
|
||
''' create env and agent
|
||
'''
|
||
env = gym.make(cfg.env_name) # create env
|
||
if cfg.seed !=0: # set random seed
|
||
all_seed(env,seed=cfg.seed)
|
||
n_states = env.observation_space.shape[0] # state dimension
|
||
n_actions = env.action_space.n # action dimension
|
||
print(f"state dim: {n_states}, action dim: {n_actions}")
|
||
# model = MLP(n_states,n_actions)
|
||
model = SoftQNetwork(n_states,n_actions)
|
||
memory = ReplayBufferQue(cfg.memory_capacity) # replay buffer
|
||
agent = SoftQ(n_actions,model,memory,cfg) # create agent
|
||
return env, agent
|
||
|
||
def train(cfg, env, agent):
|
||
''' training
|
||
'''
|
||
print("start training!")
|
||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||
rewards = [] # record rewards for all episodes
|
||
steps = [] # record steps for all episodes, sometimes need
|
||
for i_ep in range(cfg.train_eps):
|
||
ep_reward = 0 # reward per episode
|
||
ep_step = 0
|
||
state = env.reset() # reset and obtain initial state
|
||
while True:
|
||
# for _ in range(cfg.max_steps):
|
||
ep_step += 1
|
||
action = agent.sample_action(state) # sample action
|
||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||
agent.memory.push((state, action, reward, next_state, done)) # save transitions
|
||
state = next_state # update next state for env
|
||
agent.update() # update agent
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
if (i_ep + 1) % cfg.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if (i_ep + 1) % 10 == 0:
|
||
print(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}')
|
||
print("finish training!")
|
||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||
return res_dic
|
||
def test(cfg, env, agent):
|
||
print("start testing!")
|
||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||
rewards = [] # record rewards for all episodes
|
||
for i_ep in range(cfg.test_eps):
|
||
ep_reward = 0 # reward per episode
|
||
state = env.reset() # reset and obtain initial state
|
||
while True:
|
||
action = agent.predict_action(state) # predict action
|
||
next_state, reward, done, _ = env.step(action)
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
rewards.append(ep_reward)
|
||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||
print("finish testing!")
|
||
env.close()
|
||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上
|
||
agent.save_model(path = cfg.model_path) # 保存模型
|
||
save_results(res_dic, tag = 'train', path = cfg.result_path)
|
||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train")
|
||
# 测试
|
||
env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试
|
||
agent.load_model(path = cfg.model_path) # 导入模型
|
||
res_dic = test(cfg, env, agent)
|
||
save_results(res_dic, tag='test',
|
||
path = cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果 |