67 lines
2.5 KiB
Python
67 lines
2.5 KiB
Python
import sys,os
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
parent_path = os.path.dirname(curr_path) # 父路径
|
|
sys.path.append(parent_path) # 添加路径到系统路径
|
|
|
|
import gym
|
|
import torch
|
|
import datetime
|
|
from common.utils import plot_rewards
|
|
from common.utils import save_results,make_dir
|
|
from ppo2 import PPO
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
|
|
class PPOConfig:
|
|
def __init__(self) -> None:
|
|
self.algo = "PPO" # 算法名称
|
|
self.env_name = 'Pendulum-v1' # 环境名称
|
|
self.continuous = True # 环境是否为连续动作
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.train_eps = 200 # 训练的回合数
|
|
self.test_eps = 20 # 测试的回合数
|
|
self.batch_size = 5
|
|
self.gamma=0.99
|
|
self.n_epochs = 4
|
|
self.actor_lr = 0.0003
|
|
self.critic_lr = 0.0003
|
|
self.gae_lambda=0.95
|
|
self.policy_clip=0.2
|
|
self.hidden_dim = 256
|
|
self.update_fre = 20 # frequency of agent update
|
|
|
|
class PlotConfig:
|
|
def __init__(self) -> None:
|
|
self.algo = "PPO" # 算法名称
|
|
self.env_name = 'Pendulum-v1' # 环境名称
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
|
'/'+curr_time+'/results/' # 保存结果的路径
|
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
|
'/'+curr_time+'/models/' # 保存模型的路径
|
|
self.save = True # 是否保存图片
|
|
|
|
def env_agent_config(cfg,seed=1):
|
|
env = gym.make(cfg.env_name)
|
|
env.seed(seed)
|
|
n_states = env.observation_space.shape[0]
|
|
n_actions = env.action_space.shape[0]
|
|
agent = PPO(n_states,n_actions,cfg)
|
|
return env,agent
|
|
|
|
|
|
cfg = PPOConfig()
|
|
plot_cfg = PlotConfig()
|
|
# 训练
|
|
env,agent = env_agent_config(cfg,seed=1)
|
|
rewards, ma_rewards = train(cfg, env, agent)
|
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
|
agent.save(path=plot_cfg.model_path)
|
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
|
# 测试
|
|
env,agent = env_agent_config(cfg,seed=10)
|
|
agent.load(path=plot_cfg.model_path)
|
|
rewards,ma_rewards = eval(cfg,env,agent)
|
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval") |