Files
easy-rl/projects/codes/DoubleDQN/task0.py
2022-08-15 22:31:37 +08:00

126 lines
5.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2022-07-21 21:52:31
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import torch
import datetime
import argparse
from common.utils import save_results,make_dir
from common.utils import plot_rewards,save_args
from common.models import MLP
from common.memories import ReplayBuffer
from DoubleDQN.double_dqn import DoubleDQN
def get_args():
""" 超参数
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # 保存模型的路径
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
model = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim)
memory = ReplayBuffer(cfg.memory_capacity)
agent = DoubleDQN(n_states,n_actions,model,memory,cfg)
return env,agent
def train(cfg,env,agent):
print("开始训练!")
print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
rewards = [] # 记录所有回合的奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.sample(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}Epislon{agent.epsilon:.3f}')
rewards.append(ep_reward)
print("完成训练!")
return {'rewards':rewards}
def test(cfg,env,agent):
print("开始测试!")
print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
rewards = [] # 记录所有回合的奖励
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.predict(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}')
print("完成测试!")
return {'rewards':rewards}
if __name__ == "__main__":
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg,seed=1)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg) # 保存参数
agent.save(path=cfg.model_path) # 保存模型
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], cfg, tag="train")
# 测试
env, agent = env_agent_config(cfg,seed=1)
agent.load(path=cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results(res_dic, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果