Files
easy-rl/projects/codes/MonteCarlo/task0.py
2022-11-14 21:35:28 +08:00

125 lines
4.9 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2022-11-08 23:35:18
Discription:
Environment:
'''
import sys,os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import datetime
import gym
from envs.wrappers import CliffWalkingWapper
from envs.register import register_env
from common.utils import merge_class_attrs,all_seed
from common.launcher import Launcher
from MonteCarlo.agent import FisrtVisitMC
from MonteCarlo.config.config import GeneralConfigMC,AlgoConfigMC
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigMC())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigMC())
def env_agent_config(self,cfg,logger):
''' create env and agent
'''
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=False) # create env
if cfg.env_name == 'CliffWalking-v0':
env = CliffWalkingWapper(env)
if cfg.seed !=0: # set random seed
all_seed(env,seed=cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
agent = FisrtVisitMC(cfg)
return env,agent
def train_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
one_ep_transition = []
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.sample_action(state) # sample action
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
one_ep_transition.append((state, action, reward)) # save transitions
agent.update(one_ep_transition) # update agent
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
def test_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.predict_action(state) # sample action
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
def train(cfg, env, agent):
print("开始训练!")
print(f"环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}")
rewards = []
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
one_ep_transition = []
while True:
action = agent.sample(state)
next_state, reward, done = env.step(action)
ep_reward += reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
print("完成训练")
return {'rewards':rewards}
def test(cfg, env, agent):
print("开始测试!")
print(f"环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
rewards = []
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.predict(state)
next_state, reward, done = env.step(action)
ep_reward += reward
state = next_state
if done:
break
rewards.append(ep_reward)
print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}')
return {'rewards':rewards}
if __name__ == "__main__":
main = Main()
main.run()