125 lines
4.9 KiB
Python
125 lines
4.9 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: John
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-03-11 14:26:44
|
|
LastEditor: John
|
|
LastEditTime: 2022-11-08 23:35:18
|
|
Discription:
|
|
Environment:
|
|
'''
|
|
import sys,os
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
|
parent_path = os.path.dirname(curr_path) # parent path
|
|
sys.path.append(parent_path) # add path to system path
|
|
|
|
import datetime
|
|
import gym
|
|
from envs.wrappers import CliffWalkingWapper
|
|
from envs.register import register_env
|
|
from common.utils import merge_class_attrs,all_seed
|
|
from common.launcher import Launcher
|
|
from MonteCarlo.agent import FisrtVisitMC
|
|
from MonteCarlo.config.config import GeneralConfigMC,AlgoConfigMC
|
|
|
|
class Main(Launcher):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigMC())
|
|
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigMC())
|
|
def env_agent_config(self,cfg,logger):
|
|
''' create env and agent
|
|
'''
|
|
register_env(cfg.env_name)
|
|
env = gym.make(cfg.env_name,new_step_api=False) # create env
|
|
if cfg.env_name == 'CliffWalking-v0':
|
|
env = CliffWalkingWapper(env)
|
|
if cfg.seed !=0: # set random seed
|
|
all_seed(env,seed=cfg.seed)
|
|
try: # state dimension
|
|
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
|
except AttributeError:
|
|
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
|
n_actions = env.action_space.n # action dimension
|
|
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
|
# update to cfg paramters
|
|
setattr(cfg, 'n_states', n_states)
|
|
setattr(cfg, 'n_actions', n_actions)
|
|
agent = FisrtVisitMC(cfg)
|
|
return env,agent
|
|
def train_one_episode(self, env, agent, cfg):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0
|
|
state = env.reset() # reset and obtain initial state
|
|
one_ep_transition = []
|
|
for _ in range(cfg.max_steps):
|
|
ep_step += 1
|
|
action = agent.sample_action(state) # sample action
|
|
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
|
one_ep_transition.append((state, action, reward)) # save transitions
|
|
agent.update(one_ep_transition) # update agent
|
|
state = next_state # update next state for env
|
|
ep_reward += reward #
|
|
if terminated:
|
|
break
|
|
return agent,ep_reward,ep_step
|
|
def test_one_episode(self, env, agent, cfg):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0
|
|
state = env.reset() # reset and obtain initial state
|
|
for _ in range(cfg.max_steps):
|
|
ep_step += 1
|
|
action = agent.predict_action(state) # sample action
|
|
next_state, reward, terminated, info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
|
state = next_state # update next state for env
|
|
ep_reward += reward #
|
|
if terminated:
|
|
break
|
|
return agent,ep_reward,ep_step
|
|
|
|
def train(cfg, env, agent):
|
|
print("开始训练!")
|
|
print(f"环境:{cfg.env_name},算法:{cfg.algo_name},设备:{cfg.device}")
|
|
rewards = []
|
|
for i_ep in range(cfg.train_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
one_ep_transition = []
|
|
while True:
|
|
action = agent.sample(state)
|
|
next_state, reward, done = env.step(action)
|
|
ep_reward += reward
|
|
one_ep_transition.append((state, action, reward))
|
|
state = next_state
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
agent.update(one_ep_transition)
|
|
if (i_ep+1) % 10 == 0:
|
|
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
|
print("完成训练")
|
|
return {'rewards':rewards}
|
|
|
|
def test(cfg, env, agent):
|
|
print("开始测试!")
|
|
print(f"环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}")
|
|
rewards = []
|
|
for i_ep in range(cfg.test_eps):
|
|
state = env.reset()
|
|
ep_reward = 0
|
|
while True:
|
|
action = agent.predict(state)
|
|
next_state, reward, done = env.step(action)
|
|
ep_reward += reward
|
|
state = next_state
|
|
if done:
|
|
break
|
|
rewards.append(ep_reward)
|
|
print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}')
|
|
return {'rewards':rewards}
|
|
|
|
if __name__ == "__main__":
|
|
main = Main()
|
|
main.run() |