49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
@Author: John
|
|
@Email: johnjim0816@gmail.com
|
|
@Date: 2020-06-11 16:30:09
|
|
@LastEditor: John
|
|
LastEditTime: 2020-09-02 01:20:03
|
|
@Discription:
|
|
@Environment: python 3.7.7
|
|
'''
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import seaborn as sns;
|
|
import numpy as np
|
|
import os
|
|
|
|
def plot(item,ylabel='rewards',save_fig = True):
|
|
'''plot using searborn to plot
|
|
'''
|
|
sns.set()
|
|
plt.figure()
|
|
plt.plot(np.arange(len(item)), item)
|
|
plt.title(ylabel+' of DDPG')
|
|
plt.ylabel(ylabel)
|
|
plt.xlabel('episodes')
|
|
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
|
plt.show()
|
|
|
|
# def plot(item,ylabel='rewards'):
|
|
#
|
|
# df = pd.DataFrame(dict(time=np.arange(len(item)),value=item))
|
|
# g = sns.relplot(x="time", y="value", kind="line", data=df)
|
|
# # g.fig.autofmt_xdate()
|
|
# # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning")
|
|
# # # sns.tsplot(time=time, data=x2, color="b", condition="dagger")
|
|
# # plt.ylabel("Reward")
|
|
# # plt.xlabel("Iteration Number")
|
|
# # plt.title("Imitation Learning")
|
|
|
|
# plt.show()
|
|
if __name__ == "__main__":
|
|
|
|
output_path = os.path.dirname(__file__)+"/result/"
|
|
rewards=np.load(output_path+"rewards.npy", )
|
|
moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",)
|
|
plot(rewards)
|
|
plot(moving_average_rewards,ylabel='moving_average_rewards')
|