Files
easy-rl/projects/codes/Sarsa/sarsa.py
2022-08-29 15:12:33 +08:00

64 lines
2.4 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:58:16
LastEditor: John
LastEditTime: 2022-08-25 21:26:08
Discription:
Environment:
'''
import numpy as np
from collections import defaultdict
import torch
import math
class Sarsa(object):
def __init__(self,cfg):
self.n_actions = cfg['n_actions']
self.lr = cfg['lr']
self.gamma = cfg['gamma']
self.epsilon = cfg['epsilon_start']
self.sample_count = 0
self.epsilon_start = cfg['epsilon_start']
self.epsilon_end = cfg['epsilon_end']
self.epsilon_decay = cfg['epsilon_decay']
self.Q_table = defaultdict(lambda: np.zeros(self.n_actions)) # Q table
def sample_action(self, state):
''' another way to represent e-greedy policy
'''
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed
best_action = np.argmax(self.Q_table[str(state)]) # array cannot be hashtable, thus convert to str
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
return action
def predict_action(self,state):
''' predict action while testing
'''
action = np.argmax(self.Q_table[str(state)])
return action
def update(self, state, action, reward, next_state, next_action,done):
Q_predict = self.Q_table[str(state)][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * self.Q_table[str(next_state)][next_action] # the only difference from Q learning
self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict)
def save_model(self,path):
import dill
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(
obj=self.Q_table,
f=path+"checkpoint.pkl",
pickle_module=dill
)
print("Model saved!")
def load_model(self, path):
import dill
self.Q_table=torch.load(f=path+'checkpoint.pkl',pickle_module=dill)
print("Mode loaded!")