Files
easy-rl/projects/codes/Sarsa/main.py
2022-08-29 15:12:33 +08:00

125 lines
5.9 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 17:59:16
LastEditor: John
LastEditTime: 2022-08-26 23:03:39
Discription:
Environment:
'''
import sys,os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add path to system path
import gym
import datetime
import argparse
from envs.register import register_env
from envs.wrappers import CliffWalkingWapper
from Sarsa.sarsa import Sarsa
from common.utils import all_seed
from common.launcher import Launcher
class Main(Launcher):
def get_args(self):
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default = 'Sarsa',type=str,help="name of algorithm")
parser.add_argument('--env_name',default = 'Racetrack-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default = 300,type=int,help="episodes of training")
parser.add_argument('--test_eps',default = 20,type=int,help="episodes of testing")
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.90,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.2,type=float,help="learning rate")
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=10,type=int,help="seed")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
}
args = {**vars(args),**default_args} # type(dict)
return args
def env_agent_config(self,cfg):
register_env(cfg['env_name'])
env = gym.make(cfg['env_name'])
if cfg['seed'] !=0: # set random seed
all_seed(env,seed= cfg['seed'])
if cfg['env_name'] == 'CliffWalking-v0':
env = CliffWalkingWapper(env)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
print(f"n_states: {n_states}, n_actions: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
agent = Sarsa(cfg)
return env,agent
def train(self,cfg,env,agent):
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = [] # record steps for all episodes
for i_ep in range(cfg['train_eps']):
ep_reward = 0 # reward per episode
ep_step = 0 # step per episode
state = env.reset() # reset and obtain initial state
action = agent.sample_action(state)
# while True:
for _ in range(cfg['ep_max_steps']):
next_state, reward, done, _ = env.step(action) # update env and return transitions
next_action = agent.sample_action(next_state)
agent.update(state, action, reward, next_state, next_action,done) # update agent
state = next_state # update state
action = next_action
ep_reward += reward
ep_step += 1
if done:
break
rewards.append(ep_reward)
steps.append(ep_step)
if (i_ep+1)%10==0:
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps: {ep_step}, Epislon: {agent.epsilon:.3f}')
print("Finish training!")
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
def test(self,cfg,env,agent):
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = [] # record rewards for all episodes
steps = [] # record steps for all episodes
for i_ep in range(cfg['test_eps']):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg['ep_max_steps']):
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward+=reward
ep_step+=1
if done:
break
rewards.append(ep_reward)
steps.append(ep_step)
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps: {ep_step}, Reward: {ep_reward:.2f}")
print("Finish testing!")
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
main = Main()
main.run()