Files
easy-rl/projects/codes/PolicyGradient/pg.py
2022-08-29 15:12:33 +08:00

90 lines
2.9 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:27:44
LastEditor: John
LastEditTime: 2022-08-27 13:45:26
Discription:
Environment:
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Bernoulli
from torch.autograd import Variable
import numpy as np
class PolicyGradient:
def __init__(self, model,memory,cfg):
self.gamma = cfg['gamma']
self.device = torch.device(cfg['device'])
self.memory = memory
self.policy_net = model.to(self.device)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg['lr'])
def sample_action(self,state):
state = torch.from_numpy(state).float()
state = Variable(state)
probs = self.policy_net(state)
print("probs")
print(probs)
m = Bernoulli(probs) # 伯努利分布
action = m.sample()
action = action.data.numpy().astype(int)[0] # 转为标量
return action
def predict_action(self,state):
state = torch.from_numpy(state).float()
state = Variable(state)
probs = self.policy_net(state)
m = Bernoulli(probs) # 伯努利分布
action = m.sample()
action = action.data.numpy().astype(int)[0] # 转为标量
return action
def update(self):
state_pool,action_pool,reward_pool= self.memory.sample()
state_pool,action_pool,reward_pool = list(state_pool),list(action_pool),list(reward_pool)
# Discount reward
running_add = 0
for i in reversed(range(len(reward_pool))):
if reward_pool[i] == 0:
running_add = 0
else:
running_add = running_add * self.gamma + reward_pool[i]
reward_pool[i] = running_add
# Normalize reward
reward_mean = np.mean(reward_pool)
reward_std = np.std(reward_pool)
for i in range(len(reward_pool)):
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
# Gradient Desent
self.optimizer.zero_grad()
for i in range(len(reward_pool)):
state = state_pool[i]
action = Variable(torch.FloatTensor([action_pool[i]]))
reward = reward_pool[i]
state = Variable(torch.from_numpy(state).float())
probs = self.policy_net(state)
m = Bernoulli(probs)
loss = -m.log_prob(action) * reward # Negtive score function x reward
# print(loss)
loss.backward()
self.optimizer.step()
self.memory.clear()
def save_model(self,path):
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(self.policy_net.state_dict(), path+'checkpoint.pt')
def load_model(self,path):
self.policy_net.load_state_dict(torch.load(path+'checkpoint.pt'))