#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-11 14:26:44 LastEditor: John LastEditTime: 2021-05-05 17:27:50 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import datetime from common.utils import save_results,make_dir from common.plot import plot_rewards from MonteCarlo.agent import FisrtVisitMC from envs.racetrack_env import RacetrackEnv curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time class MCConfig: def __init__(self): self.algo = "MC" # name of algo self.env = 'Racetrack' self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save models # epsilon: The probability to select a random action . self.epsilon = 0.15 self.gamma = 0.9 # gamma: Gamma discount factor. self.train_eps = 200 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # check gpu def env_agent_config(cfg,seed=1): env = RacetrackEnv() n_actions = 9 agent = FisrtVisitMC(n_actions, cfg) return env,agent def train(cfg, env, agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moving average rewards for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 one_ep_transition = [] while True: action = agent.choose_action(state) next_state, reward, done = env.step(action) ep_reward += reward one_ep_transition.append((state, action, reward)) state = next_state if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) agent.update(one_ep_transition) if (i_ep+1) % 10 == 0: print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}") print('Complete training!') return rewards, ma_rewards def eval(cfg, env, agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moving average rewards for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 while True: action = agent.choose_action(state) next_state, reward, done = env.step(action) ep_reward += reward state = next_state if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) if (i_ep+1) % 10 == 0: print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}") return rewards, ma_rewards if __name__ == "__main__": cfg = MCConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)