#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-29 10:37:32 LastEditor: John LastEditTime: 2021-05-04 22:35:56 Discription: Environment: ''' import sys import os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import datetime import numpy as np import torch import gym from common.utils import save_results,make_dir from common.utils import plot_rewards from HierarchicalDQN.agent import HierarchicalDQN from HierarchicalDQN.train import train,test curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 algo_name = "Hierarchical DQN" # 算法名称 env_name = 'CartPole-v0' # 环境名称 class HierarchicalDQNConfig: def __init__(self): self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.train_eps = 300 # 训练的episode数目 self.test_eps = 50 # 测试的episode数目 self.gamma = 0.99 self.epsilon_start = 1 # start epsilon of e-greedy policy self.epsilon_end = 0.01 self.epsilon_decay = 200 self.lr = 0.0001 # learning rate self.memory_capacity = 10000 # Replay Memory capacity self.batch_size = 32 self.target_update = 2 # 目标网络的更新频率 self.hidden_dim = 256 # 网络隐藏层 class PlotConfig: ''' 绘图相关参数设置 ''' def __init__(self) -> None: self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = HierarchicalDQN(n_states,n_actions,cfg) return env,agent if __name__ == "__main__": cfg = HierarchicalDQNConfig() plot_cfg = PlotConfig() # 训练 env, agent = env_agent_config(cfg, seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=plot_cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg, seed=10) agent.load(path=plot_cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果