#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-11-07 18:10:37 LastEditor: JiangJi LastEditTime: 2022-07-21 21:52:31 Discription: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import torch import datetime import argparse from common.utils import save_results,make_dir from common.utils import plot_rewards,save_args from DoubleDQN.double_dqn import DoubleDQN def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.0001,type=float,help="learning rate") parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=64,type=int) parser.add_argument('--target_update',default=2,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = DoubleDQN(n_states,n_actions,cfg) return env,agent def train(cfg,env,agent): print('Start training!') print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 state = env.reset() # 重置环境,返回初始状态 while True: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) state = next_state agent.update() if done: break if i_ep % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) if (i_ep+1)%10 == 0: print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}') rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Finish training!') return {'rewards':rewards,'ma_rewards':ma_rewards} def test(cfg,env,agent): print('Start testing') print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}') ############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ############### cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon ################################################################################ rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 while True: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}") print('Finish testing!') return {'rewards':rewards,'ma_rewards':ma_rewards} if __name__ == "__main__": cfg = get_args() print(cfg.device) # training env,agent = env_agent_config(cfg,seed=1) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) agent.save(path=cfg.model_path) save_results(res_dic, tag='train', path=cfg.result_path) plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # testing env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) res_dic = test(cfg,env,agent) save_results(res_dic, tag='test', path=cfg.result_path) plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")