The Mirage of Action-Dependent Baselines in
Reinforcement Learning

fEZ&: George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, Sergey Levine

e EEIE: https://arxiv.org/abs/1802.10031v3

RR AR SGHTHOTNEFNTE, INNRRHIEXE—EXI ENRISERETHE, MAREELRY,
R T — T FEARSMMERES

Motivation (Why):

TR E T RN A 2T HRMMERRN, R EEREBESZNSEHTSBRESZ, X
S— MK, FREZEET IINFIRRE, KMM(INTHERZEF—LABIH KIS, FE
BB EOSW, BT IEF S, BE—MIVNIKHSENRA TSR,

Main Idea (What):
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Figure 3. Evaluation of Q-Prop, an unbiased version of Q-Prop that applies the normalization to all terms, and TRPO (implementations
based on the code accompanying Gu et al. (2017a)). We plot mean episode reward with standard deviation intervals capped at the
minimum and maximum across 10 random seeds. The batch size across all experiments was 5000. On the continuous control tasks

(HalfCheetah and Humanoid), we found that that the unbiased Q-Prop performs similarly to TRPO, while the (biased) Q-Prop outperforms
both. On the discrete task (CartPole), we found almost no difference between the three algorithms.
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Main Contribution (How):
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Figure 4. Evaluating the horizon-aware value function, TRPO with a state-dependent baseline, TRPO state-action-dependent baseline, and

TRPO. We plot mean episode reward and standard deviation intervals capped at the minimum and maximum across 5 random seeds. The
batch size across all experiments was 5000.
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