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PPO with Adaptive KL Penalty

Algorithm 1 Proximal Policy Optimization (adapted from [8]])

forie {1,---,N}do
Run policy mp for T" timesteps, collecting {s:, as, rs }
Estimate advantages A, = 3/, Aty — Vi(se)
Told £ e
forje{1,---,M}do
Jepo(f) = Z?:l %At — MKL[mo1a|ms]
Update @ by a gradient method w.r.t. Jppo(60)
end for
forje{l,---,B}do
Lpr(¢) = =21 (Cpse v e = Velsi)?
Update ¢ by a gradient method w.r.t. Lpr(9)
end for
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