
JoyRL论⽂文阅读《Prioritized Experience
Replay》 + Python代码

作者：Tom Schaul, John Quan, Ioannis Antonoglou and David Silver

实验室：Google DeepMind

邮箱：{schaul,johnquan,ioannisa,davidsilver}@google.com

论⽂文地址：https://arxiv.org/abs/1511.05952 Published as a conference paper at ICLR 2016

标题有问题

⼀一、提出背景
深度强化学习算法，结合了了深度学习强⼤大的环境感知能⼒力力和强化学习的决策能⼒力力，近年年来被⼴广泛应⽤用于
游戏、⽆无⼈人⾃自主导航、多智能体协作以及推荐系统等各类⼈人⼯工智能新兴领域。强化学习作为机器器学习的
⼀一个重要分⽀支，其本质是智能体以“试错”的⽅方式在与环境中学习策略略，与常⻅见的监督学习和⾮非监督学习
不不同，强化学习强调智能体与环境之间的交互，在交互过程中通过不不断学习来改变策略略得到最⼤大回报，
以得到最优策略略。

强化学习由于其算法特性，并没有现成的数据集，⽽而仅靠单步获得的数据对未知的复杂环境信息进⾏行行感
知决策并不不⾼高效可靠。DQN算法结合神经⽹网络的同时，结合了了经验回放机制，针对Q-learning的局限
性，打消了了采样数据相关性，使得数据分布变得更更稳定。

但随着DQN算法的应⽤用，研究⼈人员发现，基于经验回放机制的DQN算法，仅采⽤用均匀采样和批次更更新，
导致部分数量量少但价值⾼高的经验没有被⾼高效的利利⽤用。针对上述情况，Deep Mind团队提出了了Prioritized
Experience Replay（优先经验回放）机制，本⽂文将对该论⽂文展开详细介绍。

⼆二、摘要和结论

1 摘要

经验重放（Experience replay）使在线强化学习（Online reinforcement learning）智能体可以记住和
重⽤用过去的经验。先前的经验重放是从存储器器中统⼀一采样，只是以与最初经验的相同频率进⾏行行重采样，
⽽而不不管其重要性如何。该论⽂文开发了了⼀一个优先考虑经验的框架，以便便更更频繁地重播重要的数据，从⽽而更更
有效地学习。⽂文章中将优先经验回放机制与DQN⽹网络结合，在49场⽐比赛中有41场具有统⼀一重播的DQN
表现优于DQN。

2 结论

⽂文章为经验回放机制及其⼏几个变体，设计了了可以扩展到⼤大型重放内存的实现，发现优先级重放可以将学
习速度提⾼高2倍，并在Atari Baseline上带来了了最新的性能。

三、基本理理论

https://arxiv.org/abs/1511.05952

1 经验回放（Experience Replay）：

创建⼀一个经验池（Experience Replay Buffer），每⼀一次Agent选择⼀一个动作与环境交互就会储存⼀一
组数据 到经验池中。
维护这个经验池（队列列），当储存的数据组数到达⼀一定的阈值，数据到就会从队列列中被提取出来。
采⽤用均匀采样的⽅方式进⾏行行数据提取。

上述⽅方法解决了了经验数据的相关性（Correlated data）和⾮非平稳分布（Non-stationary distribution）
问题。它的做法是从以往的状态转移（经验）中均匀采样进⾏行行训练。优点是数据利利⽤用率⾼高，⼀一个样本被
多次使⽤用，且连续样本的相关性会使参数更更新的⽅方差（Variance）⽐比较⼤大，以此减少这种相关性。

然⽽而，采⽤用均匀采样⽅方式存在的问题，作者举了了例例⼦子如图所示：

左图表示⼀一个（稀疏奖励）环境有初始状态为1，有n个状态，两个可选动作，仅当选择绿⾊色线条动作的
时候可以得到 reward=1 的奖励；右图为实验结果，⿊黑⾊色曲线代表均匀采样的结果，蓝⾊色曲线为研究⼈人
员提出的⼀一个名为“oracle”的最优次序，即每次采样的transition均采⽤用“最好”的结果，实验结果可看出
每次采⽤用最优次序的⽅方法在稀疏奖励（Reward sparse）环境能够明显优于均匀采样。

那么如何在实际应⽤用当中找到这个“最优”次序，即如何在采样前提前设计好⼀一个次序，使得每次采样的
数据都尽可能让agent⾼高效学习呢？

2 优先经验回放（Prioritized Experience Replay，PER）

针对经验回放机制存在的问题，DeepMind团队提出了了两⽅方⾯面的思考：要存储哪些经验（which
experiences to store），以及要重放哪些经验（which experiences to replay，and how to do
so）。论⽂文中仅针对后者，即怎么样选取要采样的数据以及实验的⽅方法做了了详尽的说明和研究。

PER机制将TD-error（时序误差）作为衡量量标准评估被采样数据的优先级。TD-error指在时序差分中当
前Q值和它⽬目标Q值的差值,误差越⼤大即表示该数据对⽹网络参数的更更新越有帮助。贪婪（选取最⼤大值）的
采样TD-error⼤大的数据训练，理理论上会加速收敛，但随之⽽而来也会⾯面临以下问题：

TD-error可看做对参数更更新的信息增益，信息增益较⼤大仅表示对于当前的价值⽹网络参数⽽而⾔言增益较
⼤大，但却不不能代表对于后续的价值⽹网络没有较⼤大的增益。若只贪婪的考虑信息增益来采样，当前
TD-error较⼩小的数据优先级会越来越低，后⾯面会越来越难采样到该组数据。
贪婪的选择使得神经⽹网络总是更更新某⼀一部分样本，即“经验的⼀一个⼦子集”，很可能导致陷⼊入局部最
优，亦或是过估计的发⽣生。

针对上述PER存在的问题，作者在⽂文中提出了了⼀一种随机抽样的⽅方法，该⽅方法介于纯贪婪和均匀随机之
间，确保transition基于优先级的被采样概率是单调的，同时即使对于最低优先级的transition也保证⾮非
零的概率，随机抽样的⽅方法将在1.3展开介绍。

四、相关改进⼯工作

四、相关改进⼯工作
1 随机优先级（Stochastic Prioritization）

论⽂文将采样transition 的概率定义为：

其中 表示transition 的优先级。指数 表示决定使⽤用多少优先级，可看做⼀一个trade-off因⼦子，⽤用
来权衡uniform和greedy的程度，当 时表示均匀采样， 是表示贪婪（选取最⼤大值）采样。

在DQN中： , 表示TD-error，即每⼀一步当前Q值与⽬目标值 之间的差值，在更更新过程中
也是为了了让 的期望尽可能的⼩小。

⽂文中将随机优先经验回放划分为以下两个类型：

a）直接的，基于⽐比例例的：Proportional Prioritization

b）间接的，基于排名的：Rank-based Prioritization

a）Proportional Prioritization中，根据 决定采样概率：

其中 表示TD-eroor， 是⼀一个⼤大于0的常数，为了了保证⽆无论TD-error取值如何，采样概率 仍⼤大于0，即
仍有概率会被采样到。

b）Rank-based Prioritization中，根据 的 排名（Rank） 来决定采样概率：

作者在⽂文中对两种⽅方法进⾏行行了了⽐比较：

a）从理理论层次分析：
proportional prioritization优势在于可以直接获得 的信息，也就是它的信息增益多⼀一些；⽽而rank-
based prioritization则没有 的信息，但其对异常点不不敏敏感，因为异常点的TD-error过⼤大或过⼩小对
rank值没有太⼤大影响，也正因为此，rank-based prioritization具有更更好的鲁棒性。

b）从实验层次分析：
结果如下图所示，可以看出这两种⽅方法的表现⼤大致相同。

2 SumTree

Proportional Prioritization的实现较为复杂，可借助SumTree数据结构完成。SumTree是⼀一种树形结
构，每⽚片树叶存储每个样本的优先级P，每个树枝节点只有两个分叉，节点的值是两个分叉的和，所以
SumTree的顶端就是所有p的和。结构如下图(引⾃自jaromiru.com)所示, 顶层的节点是全部p的和。

抽样时, 我们会将 p 的总和除以 batch size, 分成 batch size 多个区间，即 .。如
果将所有节点的优先级加起来是42, 我们如果抽6个样本, 这时的区间拥有的 priority 可能是这样:[0-7],
[7-14], [14-21], [21-28], [28-35], [35-42]

然后在每个区间⾥里里随机选取⼀一个数. ⽐比如在第区间 [21-28] ⾥里里选到了了24, 就按照这个 24 从最顶上的42开
始向下搜索. ⾸首先看到最顶上 42 下⾯面有两个 child nodes, 拿着⼿手中的24对⽐比左边的 child 29, 如果左边
的 child ⽐比⾃自⼰己⼿手中的值⼤大, 那我们就⾛走左边这条路路, 接着再对⽐比 29 下⾯面的左边那个点 13, 这时, ⼿手中的
24 ⽐比 13 ⼤大, 那我们就⾛走右边的路路, 并且将⼿手中的值根据 13 修改⼀一下, 变成 24-13 = 11. 接着拿着 11 和
13 左下⻆角的 12 ⽐比, 结果 12 ⽐比 11 ⼤大, 那我们就选 12 当做这次选到的 priority, 并且也选择 12 对应的数
据。

以上⾯面的树结构为例例，根节点是42，如果要采样⼀一个样本，我们可以在[0,42]之间做均匀采样，采样到
哪个区间，就是哪个样本。⽐比如我们采样到了了26， 在（25-29）这个区间，那么就是第四个叶⼦子节点被
采样到。⽽而注意到第三个叶⼦子节点优先级最⾼高，是12，它的区间13-25也是最⻓长的，所以它会⽐比其他节
点更更容易易被采样到。

如果要采样两个样本，我们可以在[0,21],[21,42]两个区间做均匀采样，⽅方法和上⾯面采样⼀一个样本类似。

3 消除偏差（Annealing the Bias）

使⽤用优先经验回放还存在⼀一个问题是改变了了状态的分布，DQN中引⼊入经验池是为了了解决数据相关性，使
数据（尽量量）独⽴立同分布。但是使⽤用优先经验回放⼜又改变了了状态的分布，这样势必会引⼊入偏差bias，对
此，⽂文中使⽤用重要性采样结合退⽕火因⼦子来消除引⼊入的偏差。

在DQN中，梯度的计算如下所示：

（ ）

https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

在随机梯度下降（SGD）中可表示为：

⽽而重要性采样，就是给这个梯度加上⼀一个权重

重要性采样权重 在⽂文中定义为：

 表示Buffer⾥里里的样本数，⽽而 是⼀一个超参数，⽤用来决定多⼤大程度想抵消 Prioritized Experience
Replay对收敛结果的影响。如果 ，表示完全不不使⽤用重要性采样 ； 时表示完全抵消掉影响，
由于 不不再是均匀分布随机选出来的了了，⽽而是以 的概率选出来，因此，如果 ， 那么
和 就正好抵消了了，于是Prioritized Experience Replay的作⽤用也就被抵消了了，即 等同于DQN
中的 Experience Replay。

为了了稳定性，我们需要对权重 归⼀一化，但是不不⽤用真正意义上的归⼀一化，只要除上 即可，
即：

归⼀一化后的 在编写代码时可推导转化为：

五、PER代码

1 Prioritized Replay DQN 算法流程

算法输⼊入：迭代轮数 ，状态特征维度 ，动作集 ，步⻓长 ，采样权重系数 ，衰减因⼦子 ，探索
率 ，当前 ⽹网络 ，⽬目标 ⽹网络 ，批量量梯度下降的样本数 ，⽬目标 ⽹网络参数更更新频率 ，
SumTree的叶⼦子节点数 。

输出: Q⽹网络参数。

1. 随机初始化所有的状态和动作对应的价值 . 随机初始化当前 ⽹网络的所有参数 , 初始化⽬目标Q
⽹网络 的参数 。初始化经验回放SumTree 的默认数据结构，所有SumTree的 个叶⼦子
节点的优先级 为 1 。

2. for i from 1 to ，进⾏行行迭代。

a) 初始化S为当前状态序列列的第⼀一个状态，得到其特征向量量

b) 在 ⽹网络中使⽤用 作为输⼊入，得到 ⽹网络的所有动作对应的 值输出。⽤用 ⼀一贪婪法在当
前 值输出中选择对应的动作

c) 在状态 执⾏行行当前动作 , 得到新状态 对应的特征向量量 和奖励 , 是否终⽌止状态
is_end

d) 将 这个五元组存⼊入SumTree

e)

f) 从SumTree中采样 个样本 ，每个样本

被采样的概率基于 ，损失函数权重 ，计算当前

⽬目标Q值 :

g)使⽤用均⽅方差损失函数 ，通过神经⽹网络的梯度反向传播来

更更新Q⽹网络的所有参数

h) 重新计算所有样本的TD误差 ，更更新SumTree中所有节点的优先级

i) 如果 , 则更更新⽬目标 ⽹网络参数

j) 如果 是终⽌止状态，当前轮迭代完毕，否则转到步骤b)

2 相关代码

该部分代码可直接在程序⾥里里调⽤用，其中ReplayBuffer（）这个类是传统的的经验回放；
PrioritizedReplayBuffer(ReplayBuffer)这个类是优先经验回放。

import numpy as np

import random

from segment_tree import SumSegmentTree, MinSegmentTree

class ReplayBuffer(object):

 def __init__(self, size):

 """Create Replay buffer.

 Parameters

 size: int

 Max number of transitions to store in the buffer. When the

buffer

 overflows the old memories are dropped.

 """

 self._storage = []

 self._maxsize = size

 self._next_idx = 0

 def __len__(self):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 return len(self._storage)

 def add(self, obs_t, action, reward, obs_tp1, done):

 data = (obs_t, action, reward, obs_tp1, done)

 if self._next_idx >= len(self._storage):

 self._storage.append(data)

 else:

 self._storage[self._next_idx] = data

 self._next_idx = (self._next_idx + 1) % self._maxsize

 def _encode_sample(self, idxes):

 obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], []

 for i in idxes:

 data = self._storage[i]

 obs_t, action, reward, obs_tp1, done = data

 obses_t.append(np.array(obs_t, copy=False))

 actions.append(np.array(action, copy=False))

 rewards.append(reward)

 obses_tp1.append(np.array(obs_tp1, copy=False))

 dones.append(done)

 return np.array(obses_t), np.array(actions), np.array(rewards),

np.array(obses_tp1), np.array(dones)

 def sample(self, batch_size):

 """Sample a batch of experiences.

 Parameters

 batch_size: int

 How many transitions to sample.

 Returns

 obs_batch: np.array

 batch of observations

 act_batch: np.array

 batch of actions executed given obs_batch

 rew_batch: np.array

 rewards received as results of executing act_batch

 next_obs_batch: np.array

 next set of observations seen after executing act_batch

 done_mask: np.array

 done_mask[i] = 1 if executing act_batch[i] resulted in

 the end of an episode and 0 otherwise.

 """

 idxes = [random.randint(0, len(self._storage) - 1) for _ in

range(batch_size)]

 return self._encode_sample(idxes)

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

class PrioritizedReplayBuffer(ReplayBuffer):

 def __init__(self, size, alpha):

 """Create Prioritized Replay buffer.

 Parameters

 size: int

 Max number of transitions to store in the buffer. When the

buffer

 overflows the old memories are dropped.

 alpha: float

 how much prioritization is used

 (0 - no prioritization, 1 - full prioritization)

 See Also

 ReplayBuffer.__init__

 """

 super(PrioritizedReplayBuffer, self).__init__(size)

 assert alpha >= 0

 self._alpha = alpha

 it_capacity = 1

 while it_capacity < size:

 it_capacity *= 2

 self._it_sum = SumSegmentTree(it_capacity)

 self._it_min = MinSegmentTree(it_capacity)

 self._max_priority = 1.0

 def add(self, *args, **kwargs):

 """See ReplayBuffer.store_effect"""

 idx = self._next_idx

 super().add(*args, **kwargs)

 self._it_sum[idx] = self._max_priority ** self._alpha

 self._it_min[idx] = self._max_priority ** self._alpha

 def _sample_proportional(self, batch_size):

 res = []

 p_total = self._it_sum.sum(0, len(self._storage) - 1)

 every_range_len = p_total / batch_size

 for i in range(batch_size):

 mass = random.random() * every_range_len + i *

every_range_len

 idx = self._it_sum.find_prefixsum_idx(mass)

 res.append(idx)

 return res

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

 def sample(self, batch_size, beta):

 """Sample a batch of experiences.

 compared to ReplayBuffer.sample

 it also returns importance weights and idxes

 of sampled experiences.

 Parameters

 batch_size: int

 How many transitions to sample.

 beta: float

 To what degree to use importance weights

 (0 - no corrections, 1 - full correction)

 Returns

 obs_batch: np.array

 batch of observations

 act_batch: np.array

 batch of actions executed given obs_batch

 rew_batch: np.array

 rewards received as results of executing act_batch

 next_obs_batch: np.array

 next set of observations seen after executing act_batch

 done_mask: np.array

 done_mask[i] = 1 if executing act_batch[i] resulted in

 the end of an episode and 0 otherwise.

 weights: np.array

 Array of shape (batch_size,) and dtype np.float32

 denoting importance weight of each sampled transition

 idxes: np.array

 Array of shape (batch_size,) and dtype np.int32

 idexes in buffer of sampled experiences

 """

 assert beta > 0

 idxes = self._sample_proportional(batch_size)

 weights = []

 p_min = self._it_min.min() / self._it_sum.sum()

 max_weight = (p_min * len(self._storage)) ** (-beta)

 for idx in idxes:

 p_sample = self._it_sum[idx] / self._it_sum.sum()

 weight = (p_sample * len(self._storage)) ** (-beta)

 weights.append(weight / max_weight)

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

以上代码调⽤用的数据结构SumTree，代码如下：

 weights = np.array(weights)

 encoded_sample = self._encode_sample(idxes)

 return tuple(list(encoded_sample) + [weights, idxes])

 def update_priorities(self, idxes, priorities):

 """Update priorities of sampled transitions.

 sets priority of transition at index idxes[i] in buffer

 to priorities[i].

 Parameters

 idxes: [int]

 List of idxes of sampled transitions

 priorities: [float]

 List of updated priorities corresponding to

 transitions at the sampled idxes denoted by

 variable `idxes`.

 """

 assert len(idxes) == len(priorities)

 for idx, priority in zip(idxes, priorities):

 assert priority > 0

 assert 0 <= idx < len(self._storage)

 self._it_sum[idx] = priority ** self._alpha

 self._it_min[idx] = priority ** self._alpha

 self._max_priority = max(self._max_priority, priority)

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

import operator

class SegmentTree(object):

 def __init__(self, capacity, operation, neutral_element):

 """Build a Segment Tree data structure.

 https://en.wikipedia.org/wiki/Segment_tree

 Can be used as regular array, but with two

 important differences:

 a) setting item's value is slightly slower.

 It is O(lg capacity) instead of O(1).

 b) user has access to an efficient (O(log segment size))

 `reduce` operation which reduces `operation` over

 a contiguous subsequence of items in the array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

 Paramters

 capacity: int

 Total size of the array - must be a power of two.

 operation: lambda obj, obj -> obj

 and operation for combining elements (eg. sum, max)

 must form a mathematical group together with the set of

 possible values for array elements (i.e. be associative)

 neutral_element: obj

 neutral element for the operation above. eg. float('-inf')

 for max and 0 for sum.

 """

 assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity

must be positive and a power of 2."

 self._capacity = capacity

 self._value = [neutral_element for _ in range(2 * capacity)]

 self._operation = operation

 def _reduce_helper(self, start, end, node, node_start, node_end):

 if start == node_start and end == node_end:

 return self._value[node]

 mid = (node_start + node_end) // 2

 if end <= mid:

 return self._reduce_helper(start, end, 2 * node, node_start,

mid)

 else:

 if mid + 1 <= start:

 return self._reduce_helper(start, end, 2 * node + 1, mid

+ 1, node_end)

 else:

 return self._operation(

 self._reduce_helper(start, mid, 2 * node, node_start,

mid),

 self._reduce_helper(mid + 1, end, 2 * node + 1, mid +

1, node_end)

)

 def reduce(self, start=0, end=None):

 """Returns result of applying `self.operation`

 to a contiguous subsequence of the array.

 self.operation(arr[start], operation(arr[start+1],

operation(... arr[end])))

 Parameters

 start: int

 beginning of the subsequence

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 end: int

 end of the subsequences

 Returns

 reduced: obj

 result of reducing self.operation over the specified range of

array elements.

 """

 if end is None:

 end = self._capacity

 if end < 0:

 end += self._capacity

 end -= 1

 return self._reduce_helper(start, end, 1, 0, self._capacity - 1)

 def __setitem__(self, idx, val):

 # index of the leaf

 idx += self._capacity

 self._value[idx] = val

 idx //= 2

 while idx >= 1:

 self._value[idx] = self._operation(

 self._value[2 * idx],

 self._value[2 * idx + 1]

)

 idx //= 2

 def __getitem__(self, idx):

 assert 0 <= idx < self._capacity

 return self._value[self._capacity + idx]

class SumSegmentTree(SegmentTree):

 def __init__(self, capacity):

 super(SumSegmentTree, self).__init__(

 capacity=capacity,

 operation=operator.add,

 neutral_element=0.0

)

 def sum(self, start=0, end=None):

 """Returns arr[start] + ... + arr[end]"""

 return super(SumSegmentTree, self).reduce(start, end)

 def find_prefixsum_idx(self, prefixsum):

 """Find the highest index `i` in the array such that

 sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

六、总结与展望
虽然PER在采⽤用相同的交互次数时会获得更更⾼高的性能，更更加适合稀疏奖励或者⾼高奖励难以获得的复杂环
境，但其花费同样的时间，性能不不⼀一定更更⾼高，即花的时间要多三四倍。（参考⽂文献6）针对PER耗时问题
提出⾃自⼰己的实验和结论，其将总采样消耗的时间划分为三个部分（采样时间、PER更更新时间、算法更更新
时间）进⾏行行实验，发现添加了了原始PER的⽹网络耗时反⽽而更更⾼高。

 if array values are probabilities, this function

 allows to sample indexes according to the discrete

 probability efficiently.

 Parameters

 perfixsum: float

 upperbound on the sum of array prefix

 Returns

 idx: int

 highest index satisfying the prefixsum constraint

 """

 assert 0 <= prefixsum <= self.sum() + 1e-5

 idx = 1

 while idx < self._capacity: # while non-leaf

 if self._value[2 * idx] > prefixsum:

 idx = 2 * idx

 else:

 prefixsum -= self._value[2 * idx]

 idx = 2 * idx + 1

 return idx - self._capacity

class MinSegmentTree(SegmentTree):

 def __init__(self, capacity):

 super(MinSegmentTree, self).__init__(

 capacity=capacity,

 operation=min,

 neutral_element=float('inf')

)

 def min(self, start=0, end=None):

 """Returns min(arr[start], ..., arr[end])"""

 return super(MinSegmentTree, self).reduce(start, end)

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

The first one is the sample, which needs to search on the sum-tree. When the capacity of EM
goes larger, the sampling time, whose time complexity is O(logN), becomes a bottleneck.
The second one is PER update, which is the same time complexity as sampling.
The last one is the DDQN or DDPG update, which is executed on GPU.
We measure the time cost to correct all priorities of EM(capacity is 106). All data must be
predicted by DDQN on GPU, it needs 150+ s. We can see that the update cost is very high.

同时笔者本⼈人及导师在实验时也发现了了同样的问题，PER对于⽬目前稀疏奖励环境，理理论上应该是有成
效，但由于现阶段⼤大家为了了更更快探索，更更快收敛，不不仅在环境感知层⾯面做了了不不少trick，奖励函数也设计
得越来越丰富，PER耗时⻓长的缺点被⽆无限放⼤大，故⽽而⼤大家在选择经验回放池的时候尽可能考虑⾃自⼰己的实
际情况，不不要拿着Rainbow算法就开始魔改，效果可能会适得其反。

参考⽂文献
1.https://arxiv.org/pdf/1511.05952.pdf

2.https://zhuanlan.zhihu.com/p/310630316

3.https://zhuanlan.zhihu.com/p/160186240

4.https://zhuanlan.zhihu.com/p/137880325

5.https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-
replay/

6.https://www.mdpi.com/2076-3417/10/19/6925/pdf

7.蘑菇书EasyRL

个⼈人简介
李李成阳

https://arxiv.org/pdf/1511.05952.pdf
https://zhuanlan.zhihu.com/p/310630316
https://zhuanlan.zhihu.com/p/160186240
https://zhuanlan.zhihu.com/p/137880325
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/
https://www.mdpi.com/2076-3417/10/19/6925/pdf
https://gitcode.net/mirrors/datawhalechina/easy-rl?utm_source=csdn_github_accelerator

	JoyRL论文阅读《Prioritized Experience Replay》 + Python代码
	一、提出背景
	二、摘要和结论
	1 摘要
	2 结论

	三、基本理论
	1 经验回放（Experience Replay）：
	2 优先经验回放（Prioritized Experience Replay，PER）

	四、相关改进工作
	1 随机优先级（Stochastic Prioritization）
	2 SumTree
	3 消除偏差（Annealing the Bias）

	五、PER代码
	1 Prioritized Replay DQN 算法流程
	2 相关代码

	六、总结与展望
	参考文献
	个人简介

