JoyRLig X #iE {Prioritized Experience
Replay) + Python{{#3

fE&: Tom Schaul, John Quan, loannis Antonoglou and David Silver

SLIOE: Google DeepMind

BRFE: {schaul johnquan,ioannisa,davidsilver}@google.com

B3 https://arxiv.org/abs/1511.05952 Published as a conference paper at ICLR 2016

® f/_ln i Eﬁ-ﬂfﬁ
—. REE=

RERAZIEE, E87TREZIBANMERAGENTRBHMFINREKREED, ITEREK ZNAT
. TABESM. SEEREAMEMREFRAFSEATEEMAMIE, BEZIERNBRZEIN
— M EESXN, HAREERANHE NANESHMERZIRE, SELNREZIMEREZS)
AR, BAFEIFEEEASHIEZ BNRE, AREIREFBEE YR NE RS RARER,
MR RMREE,

SRS HTEEESE, FRBUMNEIES, MINERESRENEIEYARIMNERIMEEBHTR
HMRRHAA SN E. DONEEZEESHEMBNEN, 587 2REMNSH, $H3IQ-learninglEIR
M, ITHT REZUERXYE, EEREITESERE.

BREEDQNEENN A, ARARKI, ETEREMNHIMIDONEL, (XRASREMILRES,
SHHHBEMENESNEZKSEHESREIF A, 5§33 ERER, Deep MindHZBAIZH: T Prioritized
Experience Replay ({E55238EI) HEl, ASCREINZIEXBAIFHNA.

—. BEMLEiL
11EE

20BN (Experience replay) {#EZEME>) (Online reinforcement learning) & 8E{RA] AICEF]
ERTENZK., SRANEKREREMFESEPHR—RE, REUSRNZLKNNEREMERHITERKE,

MAEEEZEMIUE, ZIEXFAR T —MUEZREKAVESR, WEEMBMEBEEZMNEIE, MME
BRMEY), XEPRMAZREBNEHISDONMNEBES, T4t FRHL1I5ER L —EHEAIDQN
RIALFDQN,

2 4518

XERAZREBAGIRELTERE, 2T 7T AT REIARBERAFNLIM, KRIATHRERT UGS
SEERS2E, HTEAtari Baseline EF R T SRFTAIIEEE,

=. BFEL

https://arxiv.org/abs/1511.05952

1 23EIR (Experience Replay) :

o BIE—ERIM (Experience Replay Buffer) , 8—/RAgentitiZF— Pl ESIMER EMEETF—
BEIRe = (¢, a1, 7, 80401 BIEKMA,

o WIPIXNELM (BAFI) , SHEFEMNEHIBANEIA—ENEE, FIEZIHMSMBATIPHIRENLR,

o XA REFENH N HTHIERE.

ER5EEBRR T ZIEIEEXME (Correlated data) F3EFFaH % (Non-stationary distribution)
B, ERMERMUAEFHRESHER (21) PHOREHTIIG. TRREBENRERS, — MR E
ZRMEM, BEEEANBEXERESHRERNAZE (Variance) tERA, DAEMXFEXM,

RAM, RAYYRELAEFENE-, (FEETHFUBMR:

= = = =
=)] = =)

updates needed

[
=]

=
=

10° 10° 10° 10*
#samples

EERT—T (FBHRER) WEEVBRERT, BnDIRE, BWTEEE, (NHEREEEZDIEN
FHMERIIATS R reward=1 RO ; AEIANSTNER, BEeflEAARYIRFNER, BEMENARA
RIRHIN— TR R oracle" R MRF, BMERRFtransitiont RA"RIF LR, LRERTEL
BRRARNRFNTEERREZRM (Reward sparse) IMEREFEAEM TR,

A AGNEITE SRR A SRR RN &R F, BIEERERIRANZITIEF— R F, FE8REEN
BIRAR I aEiLagentE A F S E?

2 i 42 8EIM (Prioritized Experience Replay, PER)

HEZWEMANFITFENEIRE, DeepMindFIARE TRAEMNEBE . EFMMILLI (which
experiences to store) , MNRESHHLLRL (which experiences to replay, and how to do
so) ., IEXHPENEE, BNEAFERERENEIENU RN EM T IFRIVIZAIMASR.

PERHLEIETD-error (RFIRE) (EAGENETEBRELIRRIMNAR. TD-errorfEENFED Y
RIQEE BIRQENEE REBWABRTZBENMESHNEREEHEE ., 7E (EREKAE) B
RIFTD-error KEVEIE)IZ:, IR ERINELSY, (BREZMEBSEIGMU !

e TD-errorAl B SHEMIERE R, FERBRRANKTN THAMNMENZSHMSBRR
R, BAREARNTEENNENZIBRANILEE., ERAEMNERESIGERE, HA0
TD-errorBU/\RUEIRM SR SEAERR, EEZEREHERFINZALIE.

o HREMEREFHENZLEEME —SOBRER, E'ERRN—TF&", RAUESBEBABNE
T, MR EITRRE.

N _EAPERFERIB)E, (FEEXPFRE T —MREHMIFENTGE, ZAEN TARZENISMEN
8, HfRtransitionEFALRAMRHFERZRIERY, FEREMEN FREM IR transitionth{RIEIF
TR, BIENESELIRANE,

q. BxHETIE
1 fENE5EZR (Stochastic Prioritization)

G K Attransition HIEREN R :

P(i) = v

Hrhp, > 0FR/Rtransition BIRER, BRI AEERSMESLER, JEM— " trade-offBF, F
T EuniformfigreedyfizE, Ha = ORNRTEIRE, o = IRRTRAE (EEEAME) XK.

EDQNH: § =y — Q(s,a), KRR TD-error, BIE—¥ HAIQES BBy BINEE, EEMIEHR
RN TILSHIHAE R ATHERYN,

XGRS 2 B E A 5 F AR 38 :
a) HiEMy, ETFLEHIA: Proportional Prioritization
b) [E)#ERY, ETHEM: Rank-based Prioritization
e a) Proportional Prioritization®, 1R#E |§|/RE RIFME:

pi = ’511 +e€
Hrh §&R/RTD-eroor, e2—TATOMEL, N TRIEFLICTD-errorBYEINE, RIFEEZEp, HATF0, B
DEBERSEREFE,

e b) Rank-based Prioritization®, R{E || B9 HE® (Rank) SEREREHE:

_ 1
bi = rank(7)

EBEEX P IERT TR

a) MIEIERRSHh:

proportional prioritizationfi BEFRILAE#X15 0| ER, MR ENERIEEZ—L; frank-
based prioritization[l)3 & |§| FUER, EENFE RN, AARERMTD-errorid A/
rank{B&}%B KA, BIEEAILE, rank-based prioritization 28 EiFHIEEE,

b) MSLIREIRSH:
SZRUTEMR, FINEL XS ENRILAEERE,

—— oracle
—— rank-based
10° | — proportional
— uniform

updates needed
updates needed

10° 10° 10 10* 10° 10 10* 10°
#samples #samples

CSDN @7\ EEZ
CSDN @/ FFFRZET

2 SumTree

Proportional PrioritizationfySCIMR N E S, AIEBISUMTreeBURE ST, SumTree@—MNZ4S
1, S8R EESMERNMELRP, STRETRRERTIX, TRIVEZM T2 X, AU
SumTreefyTNimM 2B PHIFI, a0 FE(S]Ejaromiru. com)ﬁﬁT RN REEEprYH.

24 @
! 11 (=24 -13) !

(3-13) (13-25) 25 29) (29-30) (30-32) 32 40) (40- 42
TEH$¥ET B4 p E’JM*IJIZ?L,{ batch size, 23 5% batch size Z"X|[8], Bln = sum(p)/batchsize..

RIGA T R TRINERZA2, BATANRMONFA, XETRIX BB RY priority A EERIX4F:[0-7],
[7-14], [14-21], [21-28], [28-35], [35-42]

REESTXEIERHIZE—1E tEalES X8 [21-28] BifE 724, MiRiBX1 24 MR LEAY42FF
BB TR BAARRINLE 42 TEABMD child nodes, E&F 2433 LE 889 child 29, MR D
B9 child LEE 2 FHEX, BIENMEL LXK, HEBNLE 29 TEMNZDA TR 13, X0, FHE
24 tE 13 K, BRBATMEL LI, HBERBFHAVERE 13 B2—T, T 24-13=11. FEZEF 11 /I
1I3AETAN 12, SR 12t 11 K, BBEIRIE 12 BHEOXIRIZEIN priority, F B % 12 IRIAIER
1.

M EERGHAE], RTE[RE42, MRERF—TEE, HATJUTE0,42]Z BB RE, RIFE]
I XE, #MEM TR, EnBAIRFERIT26, £ (25-29) XTKXE, BPAMBELNTHFTRE
FiER, MEBME=THFORALELRES, 212, ENXEI3-25HE KN, FANAEREEMT
REBZWRER,

MRBRAEFMEE, RATTIUED,211121 4R M REMSDREE, 55M EERE—MEAEL,
3 jlf%{RZ (Annealing the Bias)

ERRARREINEFE—TREENE TREHND T, DONFSIARWMEN T HBRBIEEXE, (£
HiE (RE) MBS, ERERMAERERXEETRENS T, JFEBURSINFEDas, 3
b, XHREREEMRFLETEKXEFRBERSINNRE.

EDQNH, #HEMITEU TR

Vo, L (0;) = Esap,s {(T +ymaxQ (s',a’;0;) — Q (s, a; 0i)> Vo, Q (s, a; 91')} (1)

https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

ERHASE T (SGD) thal&m:

VoL (6) = 6V,Q(s, a)
MEBMRAE, MELX MBENLE—MEw

VoL(0) = wéV,Q(s, a)

o % ' P?z'))ﬁ

N FBufferBlARE, M R— TS, FARREZAREERIITE Prioritized Experience
ReplayS US4 RV, MR 8 =0, RATEMEREEMRE ; [= INKRTTEHOEIERNE,
BT (s,a) TERIIISMBENIELRNT, MR P(:) BBRELR, AL, IR8=1, Baw
M P(i) fIESFIEE T, F_Prioritized Experience ReplayfIfERtHMBIRE T, BB = 15REFDQN
FR#Y Experience Replay,

RNTREM, BOFEINE w A—1, EETAEEEX ENF—X, RERLE max; w; BIF,
Bp:

EEMRENEw, AXFEXR:

wj = (N * P(J'))_ﬂ/m;?LX (w:)

JA—fLER w; FERSRBE TSR
(NxPG)P (NxPG)” (PGNP (P; >‘ﬁ
) ()

i max; (w;) max; (N = P(i))=#) max; ((P(i)) min; P(i

A. PERKE
1 Prioritized Replay DQN Hi%iifz

BiEmAN: RN T, KSIHEEEn, siEE A, $Ka, RENERK [, BEERF v, FE
e, HAMQ ML Q, Bir QWME Q' , MEMETRRIEARE m, Bir Q MESEENINE C,
SumTreefIHFTHREX S .

Wil QMBS

1. BEHLADIA A FR B B RSTIRERS RIEOM B Q. BEHLADIA ML 23T Q MBHIFIESH w, WAL EFQ
W& Q MBE W — w . MIEHERERSUMTree WENASRIBLH, FiSUMTreel) S MNHF
BRIRER p; P 1

2. forifrom1to T, #HTER.

a) MBS HERIRSFIINE—TRE, BREFTERE 6(S)

b) £ Q MEHER ¢(S) fERHA, B2 Q NENFABEMNIEXNNA Q Efit. B e —REEES
B Q B4 H PEEII N AIEE A

Q) TEIRTS S HATHBIENE A, BRIFTIRES &' WRAHEEE ¢ (S') F2ZR R, 2FEIEIRE
is_end

d) B {o(S), A, R, ¢ (5),is_end} ETATAHAFASUMTree

e)s=9

f) SUMTreedi 5HE m A {¢ (S;),A;, R, ¢ (s;.) ,is_endj} i=1,2.,,,m, SMEA
BRENHERT P(j) = wiy » RREIRE w; = (N * P() 7/ max; (wi) , HE 58
BHRQME y;

R; is end ; is true

Yji = {Rj +Q' <¢ (S;) ,argmax, @ (¢ (S;) ,a,w) ,w’) is end ; is false
QIEMR A ERKREE L > wi(y; — Q (4 (S) ,Aj,w))2 , BT R ARV S R AR SR
BIQWBHMBEZSE w
h) EMTEMAEANTDIRE §; = y; — Q (¢4 (S)), 4;,w), EFSumTree AT REINITHR
pj = |6;]
AR i%C = 1, WEFHBER QNESE v = w
) AR S BRIPRE, HaiiExe, SRS RD)

2 HHRES

ZE DB EEEREREIER, EfReplayBuffer () XMERERMNZIREIR;
PrioritizedReplayBuffer(ReplayBuffer)iX N 2L f 21 E K,

1 import numpy as np
2 import random
3
4 from segment tree import SumSegmentTree, MinSegmentTree
5
6
7 class ReplayBuffer(object):
8 def _ init_ (self, size):
9 """Create Replay buffer.
10
11 Parameters
12 e e———
13 size: int
14 Max number of transitions to store in the buffer. When the
buffer
15 overflows the old memories are dropped.
16
17 self. storage = []
18 self. maxsize = size
19 self. next idx = 0
20

21 def len_ (self):

return len(self. storage)

def add(self, obs t, action, reward, obs tpl, done):

data = (obs_t, action, reward, obs_tpl, done)

if self. next idx >= len(self. storage):
self. storage.append(data)

else:
self. storage[self. next idx] = data

self. next idx = (self. next idx + 1) % self. maxsize

def encode_sample(self, idxes):

obses t, actions, rewards, obses tpl, dones = [], []1, [1, [1, []

for i in idxes:
data = self. storage[i]
obs t, action, reward, obs tpl, done = data
obses t.append(np.array(obs_t, copy=False))
actions.append(np.array(action, copy=False))
rewards . append (reward)
obses tpl.append(np.array(obs_tpl, copy=False))
dones.append (done)

return np.array(obses_t), np.array(actions), np.array(rewards),

np.array(obses tpl), np.array(dones)

def sample(self, batch size):

Sample a batch of experiences.

Parameters
batch_size: int

How many transitions to sample.

Returns
obs_batch: np.array
batch of observations
act_batch: np.array
batch of actions executed given obs batch
rew_batch: np.array
rewards received as results of executing act batch
next obs batch: np.array
next set of observations seen after executing act_ batch
done mask: np.array
done mask[i] = 1 if executing act batch[i] resulted in
the end of an episode and 0 otherwise.
idxes = [random.randint(0, len(self. storage) - 1) for _ in
range (batch size)]

return self. encode_ sample(idxes)

class PrioritizedReplayBuffer (ReplayBuffer):
def init (self, size, alpha):

Create Prioritized Replay buffer.

Parameters
size: int
Max number of transitions to store in the buffer. When the
buffer
overflows the old memories are dropped.
alpha: float
how much prioritization is used

(0 - no prioritization, 1 - full prioritization)

See Also

ReplayBuffer. init
super (PrioritizedReplayBuffer, self). init (size)
assert alpha >= 0

self. alpha = alpha

it _capacity =1
while it capacity < size:

it _capacity *= 2

self. it sum SumSegmentTree (it capacity)

self. it min MinSegmentTree (it capacity)

self. max priority = 1.0

def add(self, *args, **kwargs):

See ReplayBuffer.store effect
idx = self. next idx

super().add(*args, **kwargs)

self. it sum[idx] self. max priority ** self. alpha

self. it min[idx] self. max priority ** self. alpha
def sample proportional(self, batch size):
res = []
p_total = self. it sum.sum(0, len(self. storage) - 1)
every range len = p total / batch _size
for i in range(batch_size):
mass = random.random() * every range len + i *
every range_len
idx = self. it sum.find prefixsum idx(mass)
res.append (idx)

return res

116

117 def sample(self, batch size, beta):

118 """Sample a batch of experiences.

119

120 compared to ReplayBuffer.sample

121 it also returns importance weights and idxes

122 of sampled experiences.

123

124

125 Parameters

126 mmmm—————

127 batch size: int

128 How many transitions to sample.

129 beta: float

130 To what degree to use importance weights

131 (0 - no corrections, 1 - full correction)

132

133 Returns

134 e

135 obs_batch: np.array

136 batch of observations

137 act_batch: np.array

138 batch of actions executed given obs batch

139 rew_batch: np.array

140 rewards received as results of executing act batch
141 next obs batch: np.array

142 next set of observations seen after executing act_batch
143 done mask: np.array

144 done mask[i] = 1 if executing act_batch[i] resulted in
145 the end of an episode and 0 otherwise.

146 weights: np.array

147 Array of shape (batch size,) and dtype np.float32
148 denoting importance weight of each sampled transition
149 idxes: np.array

150 Array of shape (batch size,) and dtype np.int32
151 idexes in buffer of sampled experiences

152 e

153 assert beta > 0

154

153 idxes = self. sample proportional(batch_size)

156

157 weights = []

158 p min = self. it min.min() / self. it sum.sum()

159 max_weight = (p_min * len(self. storage)) ** (-beta)
160

161 for idx in idxes:

162 p_sample = self. it sum[idx] / self. it sum.sum()
163 weight = (p_sample * len(self. storage)) ** (-beta)

164 weights.append(weight / max weight)

165 weights = np.array(weights)

166 encoded_sample = self. encode sample(idxes)

167 return tuple(list(encoded sample) + [weights, idxes])
168

169 def update priorities(self, idxes, priorities):

170 """Update priorities of sampled transitions.

171

172 sets priority of transition at index idxes[i] in buffer
173 to priorities[i].

174

175 Parameters

176 e ————

177 idxes: [int]

178 List of idxes of sampled transitions

179 priorities: [float]

180 List of updated priorities corresponding to

181 transitions at the sampled idxes denoted by

182 variable “idxes”.

183 e

184 assert len(idxes) == len(priorities)

185 for idx, priority in zip(idxes, priorities):

186 assert priority > 0

187 assert 0 <= idx < len(self. storage)

188 self. it sum[idx] = priority ** self. alpha

189 self. it min[idx] = priority ** self. alpha

190

191 self. max priority = max(self. max priority, priority)
192

M ERRBEAREIESESumTree, UABA0TF:

1 import operator

2

3

4 class SegmentTree(object):

5 def init (self, capacity, operation, neutral element):

6 """Build a Segment Tree data structure.

7

8 https://en.wikipedia.org/wiki/Segment tree

9

10 Can be used as regular array, but with two

11 important differences:

12

13 a) setting item's value is slightly slower.

14 It is O(lg capacity) instead of O(1l).

15 b) user has access to an efficient (O(log segment size)
16 “reduce® operation which reduces “operation” over

17 a contiguous subsequence of items in the array.

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44

45
46
47

48

49
50
51
52
53
54
55

56
57
58
59
60

Paramters
capacity: int
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must form a mathematical group together with the set of
possible values for array elements (i.e. be associative)
neutral element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum.
assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity
must be positive and a power of 2."
self. capacity = capacity
self. value = [neutral element for _ in range(2 * capacity)]

self. operation = operation

def reduce helper(self, start, end, node, node start, node_end):
if start == node_start and end == node_end:
return self. value[node]
mid = (node start + node end) // 2
if end <= mid:
return self. reduce helper(start, end, 2 * node, node_start,
mid)
else:
if mid + 1 <= start:
return self. reduce_helper(start, end, 2 * node + 1, mid
+ 1, node_end)
else:
return self. operation(
self. reduce helper(start, mid, 2 * node, node start,
mid),
self. reduce_helper(mid + 1, end, 2 * node + 1, mid +

1, node_end)

def reduce(self, start=0, end=None):

Returns result of applying “self.operation”

to a contiguous subsequence of the array.

self.operation(arr[start], operation(arr[start+l],

operation(... arr[end])))

Parameters

start: int

beginning of the subsequence

61 end: int

62 end of the subsequences

63

64 Returns

65 s

66 reduced: obj

67 result of reducing self.operation over the specified range of

array elements.

68 e

69 if end is None:

70 end = self. capacity

71 if end < 0:

72 end += self. capacity

73 end -= 1

74 return self. reduce helper(start, end, 1, 0, self. capacity - 1)
75

76 def setitem (self, idx, val):

77 # index of the leaf

78 idx += self. capacity

79 self. value[idx] = val

80 idx //= 2

81 while idx >= 1:

82 self. value[idx] = self. operation(
83 self. value[2 * idx],

84 self. value[2 * idx + 1]

85)

86 idx //= 2

87

88 def getitem (self, idx):

89 assert 0 <= idx < self. capacity

90 return self. value[self. capacity + idx]
91

92

93 class SumSegmentTree(SegmentTree):

94 def init (self, capacity):

95 super (SumSegmentTree, self). init (

96 capacity=capacity,

97 operation=operator.add,

98 neutral element=0.0

99)

100

101 def sum(self, start=0, end=None):

102 """Returns arr[start] + ... + arr[end]"""

103 return super (SumSegmentTree, self).reduce(start, end)
104

105 def find prefixsum idx(self, prefixsum):

106 """Find the highest index “i in the array such that
107 sum(arr[0] + arr[l] + ... + arr[i - i]) <= prefixsum

108

109 if array values are probabilities, this function

110 allows to sample indexes according to the discrete
111 probability efficiently.

112

113 Parameters

194 | 0 cooomeeeee

115 perfixsum: float

116 upperbound on the sum of array prefix

117

118 Returns

119 —me———

120 idx: int

121 highest index satisfying the prefixsum constraint
122 e

123 assert 0 <= prefixsum <= self.sum() + le-5
124 idx =1

125 while idx < self. capacity: # while non-leaf
126 if self. value[2 * idx] > prefixsum:

127 idx = 2 * idx

128 else:

129 prefixsum -= self. value[2 * idx]

130 idx = 2 * idx + 1

131 return idx - self. capacity

132

133

134 class MinSegmentTree(SegmentTree):

135 def _ init (self, capacity):

136 super (MinSegmentTree, self). init (

137 capacity=capacity,

138 operation=min,

139 neutral element=float('inf')

140)

141

142 def min(self, start=0, end=None):

143 """Returns min(arr[start], ..., arr[end])"""
144

145 return super (MinSegmentTree, self).reduce(start, end)
146

N BESRE

SAPERTERBHRNRE R SRS ESNMEE, ENESESHEARRENESRIMEAIRSHNE T
5, BHERRFNNE, HEFA—EES, BENNEESZ=ME, (SEXHE6) HIPERFER)
RHE XN, EREREERNNENDA=182 (REEIE., PEREMHITE. BEEH
AME) #ATSERE, RIVAI T RIGPERNMERNRMES.

The first one is the sample, which needs to search on the sum-tree. When the capacity of EM
goes larger, the sampling time, whose time complexity is O(logN), becomes a bottleneck.
The second one is PER update, which is the same time complexity as sampling.

The last one is the DDQN or DDPG update, which is executed on GPU.

We measure the time cost to correct all priorities of EM(capacity is 106). All data must be
predicted by DDQN on GPU, it needs 150+ s. We can see that the update cost is very high.

EREEARARSINESLN AN T EHAEE, PERMTERBRRMAE, EIL ENZEEM
R, BERETIMERARATERRR, BIRKW, MUEMERAZEES T A Dtrick, ZRRHHEIRT
SHREFE, PERERNRKINRR/MITIRMK, MMAREEEZNEIRENRR I EEEE L
PriER, TNEZERainbowBEEMAREN, BMRAUEZEFHER.

SEX

1.https://arxiv.org/pdf/1511.05952.pdf

2.https://zhuanlan.zhihu.com/p/310630316

3.https://zhuanlan.zhihu.com/p/160186240

4.https://zhuanlan.zhihu.com/p/137880325

5.https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-

replay/
6.https://www.mdpi.com/2076-3417/10/19/6925/pdf
7. Bz PEasyRL
/N S N\

N ATE T

ZRiFA

https://arxiv.org/pdf/1511.05952.pdf
https://zhuanlan.zhihu.com/p/310630316
https://zhuanlan.zhihu.com/p/160186240
https://zhuanlan.zhihu.com/p/137880325
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/
https://www.mdpi.com/2076-3417/10/19/6925/pdf
https://gitcode.net/mirrors/datawhalechina/easy-rl?utm_source=csdn_github_accelerator

	JoyRL论文阅读《Prioritized Experience Replay》 + Python代码
	一、提出背景
	二、摘要和结论
	1 摘要
	2 结论

	三、基本理论
	1 经验回放（Experience Replay）：
	2 优先经验回放（Prioritized Experience Replay，PER）

	四、相关改进工作
	1 随机优先级（Stochastic Prioritization）
	2 SumTree
	3 消除偏差（Annealing the Bias）

	五、PER代码
	1 Prioritized Replay DQN 算法流程
	2 相关代码

	六、总结与展望
	参考文献
	个人简介

