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2.1 Deep Q-networks
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2.2 Double Deep Q-networks

yPPN — 4 Q(s' + argmazs Q(s',d';0;;67))

DDQNSDQNEA—, REXET ¢ oV mRiA,
=. Dueling Network#92244

5DQNAE, Dueling NetworkiZ k92 A*(s,a)f V*(s), 238 A(s,a;0,0) M V(s; 6, 5). Xt
FEILE, Dueling Networkf] LAERE— M EIRNBNSECRIZBUSE, ERENERTRENE.



AN

=

A
7

.
.
R i

’
s
’
’
‘ ’
"
’
s
’
‘
’
-
-

N

Bk, iRiETheorem 2, H:
Q(Sa a; 9, «, ﬁ) - V(S; 97 /B) + A(S, a, 9, Oé) — max A(s, a; 0, a)

HFDueling Network R 2243 7 AEHIZEM, FRIAIIZMEZR A SDQNFIDDQN—EY, FiEET
DQNAY3)IIZresst &R mT AR #EDueling Network LH.

3.1 mazx A(s, a;0, o) KIERA
a
R Q*(s,a) = A*(s,a) + V*(s), FAUAFIRAXMAXEEN Q* (s, a) NE—,
ERRAA SN EE, AVIRMERNEE, WaE35 2aiERNQ  (s,a). mmiEm
maz A(s,a; 0, o) —IERA A= HIXFIE R,
3.2 EFRMEATRI maz A(s, a; 0, )
a

TEEPRIERT, EEQ(s, a; 9,01,B)qJE’U%EIﬁZ:TEFngwA(S,a; 0,a), TMERTFYE, BN

Q(s,a;0,a,B8) = V(s;0,8) + (A(s,a;0,a) — ’—j” D A(s,d;6,a))

g, CI8



4.1 RISV

AT IHHEIZN Q B, BOEERT —MERNIE, EFMURME (s,a) € S x A DRITE R
N Qx(s,a)E,

RIE, RZNER, B=TEENEBAN. EBFRTEEN () AR, SEMMMRNATH
R, LISHEIA AT RERISRANRM. HB SHHERTR: £ T, £, ANELEE. T E
EERD#ERAE 10 RS, TKFERDH 50 TIRE.

ICFEERMIMEN=MTR LS FMER 5. 10 M 20 TEHfEIFERIR Q 22495 Dueling Network 2819317
T (10 70 20 spfF BB RS R IR IME IR I TR IEMAZALRY) o

BREME—T=E MLP, 817 R#EESB 50 ™85, Dueling NetworkZRMtW=24HmN, AM, £
50 METHE—TREERZE, MEDXEATR, STREMEESR 25 1M EEETHME MLP,

CORRIDOR ENVIRONMENT 5 ACTIONS 10 ACTIONS 20 ACTIONS
|
| )
[T Je[11
MANo. Iteratior;s "No. Iteratiorlmus “No. Iteratior:{s
(a) (b) (¢) (d)

Z£RRIA, @I 5 NEifE, MMEMUABIBRIERERS, A, HWAVEIME1EEER, Dueling
NetworkZ2HILEEFHY Q MBZRINELF., 7EDueling Networkd, it V(s; 6, 8) 23 —M@AE, %
BERS s LTS HUMNEZBEE, NMSEEIRULE .,

4.2 General Atari Game-Playing
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Table 1. Mean and median scores across all 57 Atari games, mea-
sured in percentages of human performance.

30 no-ops Human Starts

Mean Median Mean Median
Prior. Duel Clip | 591.9% 172.1% | 567.0%  115.3%
Prior. Single 434.6%  123.7% | 386.7% 112.9%
Duel Clip 373.1%  151.5% | 343.8% 117.1%
Single Clip 341.2%  132.6% | 302.8% 114.1%
Single 307.3% 117.8% | 3329% 110.9%
Nature DQN 227.9% 79.1% | 219.6% 68.5%
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