Asynchronous Methods for Deep Reinforcement
Learning GRESRICFINRIHIX)

{2 : Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Tim Harley,
Timothy P. Lillicrap, David Silver, Koray Kavukcuoglu

EAf\7: Google DeepMind, Montreal Institute for Learning Algorithms (MILA) , University of
Montreal

£: International Conference on Machine Learning (ICML 2016)
eItk https://arxiv.org/abs/1602.01783

IEETHE: RE—MECBENNER, SRR EITE FHAERIFNR, ETHRETFIHE

SEMBER- LR (Asynchronous advantage actor-critic , A3C) ,

* Motivation(Why): #ZNEZSENZITEEESTLULEEZERN, BRELHRE. BERY
MR ERERRINCREREIRIEXRY, ID)IGEMEE. BXMEEERIMRR: —EFER
ZHAFHESD, ——RREATRRME (off-policy) BUFIEX,

* Main Idea(What): A3GRHERFSLHTHLERNBLRENIRA, XF7TENMIATLAERRE
ERXYE, IRRRRY, FEIUNATSMEEEREITTE,

Asynchronous RL Framework (RE58{6FI%54)

A G ST MRS I EL F: —Sarsa, —$£Q%Y, n £EQEILURMEER-TFECR
(advantage actor-critic, A2C) , XEATLAFRILZRMETTE/SHREE. ETNE/RRIREEIE
EIER.

SEEREWAER:

1. AFEA—ETHESZCPURINEE, AEEGPU, XMANALU/DHSSENGEERA, FHETLA
Hogwild! B9 0TIk,

2. 2 M75hE (actor/worker) FHTRILARENAERIRIE SIMEE AN EHEREAERSSNTT AR 2E
WERESEA, XEESERTLBTERES L, FRIIZGNESTaIESEIREEXER.

FeRBIIHogwild! , XZREZRRIRL, NERRIAISHEATHE, TEFRRIL:

af://n0
https://arxiv.org/abs/1602.01783
af://n13
https://zhuanlan.zhihu.com/p/30826161

(2) Hogwild (Lock free)

Hogwild73i£[21]RILABER LS SGDRI— 1., The masterBHEREFERSK, WRESGDXEIR,
WNE7Ethe master5&ifworkeraz EEfE, %jﬁ\workerti-‘,{?%T?ﬁ%fE, BBAFEW<—W -
NAWITSHZ BIW <—W — nAWEHBAE (i, jE(1, 2, ..., P)) . XERE N T EGRIEthe
masterfflZE L ENFRAERNIIUEEFT 58, LE‘EJEHT%MIL%JQ it BB Emastersh[E—Ada)
RE—NTHERTIRESEH. MHogwild/FiEZBER T8, tiFmaster@—ATERMESZ N F15
fE, ME[211EBET Hogwildilock free®75iERue i,

Parameter Server W = W - JAw

0000000

/[] \\

00 DC]
00

0 ﬁj E’fj

Figure 5: This figure [5] is an illustration of Parameter
Server. Data is partitioned to workers. Each worker com-
putes a gradient and sends it to server for updating the
weight. The updated model is copied back to wokers

Model
Replicas

XEFENET: RIRWEEF100124L, worker UERRIESEEHT 740N SEgworker JIERAIFTTIA
EHT, MENTEREN—LSHERESE T, BFRER, Bk 7 BEFCURERESHEY

5, XMESLHER.
ETRNMEMRLEEL:

Asynchronous one-step Q-learning (RZ—$Q%#3])

af://n25

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 6, 0, and counter T’ = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 0~ « 0

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on ()(s, a;)
Receive new state s” and reward r

_)T for terminal s’
L +ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 6: df < df + 8(3”_@5;’“-‘9))
!
§=s

T+ T+ Tlandt+ t+1

if 7' mod Iligrger == 0 then
Update the target network 6~ <+ 8

end if

if { mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of € using df.
Clear gradients df + 0.

end if

until 7" > Tz

o OFN0° BHEZN, (HILRERILUEN

o BERRE—MEMbatch sizefY#%I5, HEILUMNEZHMLEEFRIWS (BIURERET
7)

o Lopgu BRSSO

o I AsyncUpdate%gﬁ*EE%ﬁ HE=SH080EE

Asynchronous one-step Sarsa (&—2#Sarsa)

5 rEmSS—EQEIMEt, REBIRNE (targetvalue) TATr +vQ(s',a’;0"), HREPH1HE
A,

Asynchronous n-step Q-learning ($Z#n¥Q%3])

af://n36
af://n38

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

H Assume global shared parameter vector 6.
/ Assume global shared target parameter vector 0~ .
H Assume global shared counter T' = 0.
Initialize thread step counter ¢ +— 1
Initialize target network parameters 6~ < @
Initialize thread-specific parameters 8’ = ¢
Initialize network gradients df + 0
repeat

Clear gradients df < 0

Synchronize thread-specific parameters 8" = 6

Lstart — €
Get state s;
repeat

Take action a: according to the e-greedy policy based on Q(st, a;6")
Receive reward r; and new state s¢1

t—t+1
T+T+1
until terminal s; or t — fstqrt == tmax
n_ 0 for terminal s;
T | max, Q(si,a;07) for non-terminal s,
foric {t—1,...,tear} do
R+~r,+~vR

)2
Accumulate gradients wrt 6': d + df + w

end for
Perform asynchronous update of ¢ using df.
if T mod Itarge: == 0 then
0~ ¢
end if
until 7 > Tan

o —SIENRRRE r RERMIMSErTEN Q(s, a) B, EftQERBERN, nSiAEEIMre
DSIERIEnSHQE, XESBIrEMHQERMEM. EXEERAEXTRERIR.

o BRE—ZESTNMEERSHY , XNSHEIENMELRITERENEHRSGER, RZHM
LA2RIRIM, JLAL)IZEIRE,

Asynchronous advantage actor-critic (A3C)

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T' = ()
/ Assume thread-specific parameter vectors 0" and 0,
Initialize thread step counter ¢ + 1
repeat
Reset gradients: dff « 0 and df,, « 0.
Synchronize thread-specific parameters ' = 6 and 0, = 0,
t-stav‘f =1
Get state s;
repeat
Perform a; according to policy 7(a|s¢; 0")
Receive reward r; and new state s;41

t+—t+1
T+ T+1
until terminal 5; ort — f00rt == tinas
R— 0 for terminal s¢
T Vs, 00) for non-terminal s.// Bootstrap from last state
foriec {t —1,... tstart} do
R+ ri+ ’}R

Accumulate gradients wrt 8': dff « df + Vg log w(a;:|s::8") (R — V(s::6,,))
Accumulate gradients wrt 02 dfl, + df, + 0 (R — V(s::0.))* /00,
end for
Perform asynchronous update of ¢ using d@ and of €, using df,.
until 7' > Thas

 THERRWEZSE, BMEEEECERN, AEttiSnEQEIEL—F

pal

—_
=
° /\;] 18

af://n45

T
Atariisk
FESMAtariiEx g b VI E || ZRiR R -

16000 Beamrider §00 Breakout 30 Pong 12000 Q*bert 1600 Space Invaders
— DON — DGN — DGN — DON
14000 — 1-stepQ — 1-step Q p — 1-step Q 1400 — 1.stepQ
500 20 10000
12000 1-step SARSA 1-step SARSA — 1-step SARSA 1200 1-step SARSA
n-step Q | n-step Q n-step Q n-step Q
10000 A3C 400 A3C 10 8000 A3C 1000 A3C
o o
5 B0O0O 6000 g 8O0
w wu

6000

— DON
— l-step Q
1-step SARSA
n-step Q
A3C

4000
4000
2000

2000

[+]
0 2 4 6 8 10 12 14
Training time (hours)

o
0o 2 4 & B 10 12 14
Training time {hours)

=30
0 2 4 & 8 10 12 14
Training time (hours)

']
0 2 4 & B 10 12 14
Training time {hours)

a
o0 2 4 & 8 10 12 14
Training time (hours)

Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atari 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUniform(10~*, 1072) and all other hyperparameters fixed.

e DQNFEK40GPU, BETFEMA16/ZAICPU, afLIBEIREMTDQN, HEnEHERMNT—E5E
19, ASCEBEMTHEHMEX.

ES7MAtariisk LR E A tERE

Method

Training Time

Mean

Median

DQN

Gorila

D-DQN
Dueling D-DOQN
Prioritized DQN
A3C, FF

A3C, FF
A3C,LSTM

8 days on GPU
4 days, 100 machines

8 days on GPU

8 days on GPU

8 days on GPU

1 day on CPU
4 days on CPU
4 days on CPU

121.9%
215.2%
332.9%
343.8%
463.6%
344.1%
496.8%
623.0%

47.5%
71.3%
110.9%
117.1%
127.6%
68.2%
116.6%
112.6%

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

Table SS3 shows the raw scores for all games.

o {BASCEARITEAtarir ERIFRI—EEIRHITINR, AJLBZIAC)IG4RrIMRESE TR EX

YR8 KA,

TORCS Car Racing Simulator (TORCSEZFISEHIEE)

fELbAtariF R BRI R MR RGO R S B AL

af://n51
af://n52
af://n63

Score

Slow car, no bots

5000
4000
3000
2000
1000 Async 1-step Q

Async SARSA
Async n-step Q
Async actor-critic
Human tester

Score

Slow car, bots

5000

4000

3000

2000

1000 —— Async 1-step Q
—— Async SARSA
—— Async n-
—— Async actor-critic
Human tester

-1000 ~1000
0 10 20 30 40 0 10 20 30 20
Training time (hours) Training time (hours)
5000 Fast car, no bots 5000 Fast car, bots
5000 5000

\/\/\”\/“/\”\/\/W

4000 4000
o 3000 @ 3000
s 5
2 S
2000 Y 2000
—— Async 1-step Q —— Async 1-step Q
1000 —— Async SARSA 1000 —— Async SARSA
—— Async n-step Q —— Async n-step Q
0 —— Async actor-critic 0 —— Async actor-critic
Human tester Human tester
-1000 -1000
0 10 20 30 40 0 10 20 30 40

Training time (hours) Training time (hours)

Figure S6. Comparison of algorithms on the TORCS car racing simulator. Four different configurations of car speed and
opponent presence or absence are shown. In each plot, all four algorithms (one-step Q, one-step Sarsa, n-step Q and
Advantage Actor-Critic) are compared on score vs training time in wall clock hours. Multi-step algorithms achieve better
policies much faster than one-step algorithms on all four levels. The curves show averages over the 5 best runs from 50
experiments with learning rates sampled from LogUni form(10™*,1072) and all other hyperparameters fixed.

o ALIERIASCERBEMTHEMEE.

Continuous Action Control Using the MujoCo Physics Simulator ({&F
Mujo CofIRiRII R TELERNEixHl)

EMujocofMEERIRIRA3CRI T A BRI ROMERE :

af://n69

Canada2d o cart . Cartpole

Leaming rate

00 g st ¥ v, "
L ? ! Ny
P TR

Learming rate : Leaming rate

Figure S7. Performance for the Mujoco continuous action domains. Scatter plot of the best score obtained against
learning rates sampled from LogUmni form(10_5, 10_1). For nearly all of the tasks there is a wide range of learning

rates that lead to good performance on the task.

o EBARZEES EASCIEFIE (learning rate) ERSEEIZN FEMBRIFAIRIL.

Labyrinth (i¥E)

X2 3DEERER, B4 (episode) ERBENER—MEE, KEEGER], FaEFHEI—
MEREB1TD, BEINNE100. BEINNRERFSEMTISEIRSEEE— M, FEZRISEHEIRIE
REEWEM. —HHER60E, SREHII—ENTITEA.

XMNEREE LI —THERNRE, EAS—REEEHA—F, XGRS, BfFE)
HASCRRIULEEREARRIFAIRER.

Scalability and Data Efficiency (aJ# RRHFIEHEHER)
NI NS R R =57 N S I I PR

frAtariiprk EAEIREEAT)

af://n75
af://n78

Number of threads
Method 1 2 4 8 16
I-step Q 1.0] 30| 6.3 | 13.3 | 24.1
I-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 22.1
n-step Q 1.0 | 2.7 | 8.9 | 10.7 | 17.2
A3C 1.0 2.1 | 37| 69 12.5

Table 2. The average training speedup for each method and num-
ber of threads averaged over seven Atari games. To compute the
training speed-up on a single game we measured the time to re-
quired reach a fixed reference score using each method and num-
ber of threads. The speedup from using n threads on a game was
defined as the time required to reach a fixed reference score using
one thread divided the time required to reach the reference score
using n threads. The table shows the speedups averaged over
seven Atari games (Beamrider, Breakout, Enduro, Pong, Q*bert,
Seaquest, and Space Invaders).

o (EERUA—MERABIERESRIRIERLL MERATIS MRS, KRBT

RORIRIEE. ERF)IGRESMELISHANEIMRT, XIERRSERRAT LRI HERI)45

Robustness and Stability (ISf@iEfIiSE)
SN Atariiak P R E AR MR

A3C:

nnnnnnnnnnnnnn

77777

Figure 2. Scatter plots of scores obtained by asynchronous advantage actor-critic on five games (Beamrider, Breakout, Pong, Q*bert,
Space Invaders) for 50 different learning rates and random initializations. On each game, there is a wide range of learning rates for
which all random initializations acheive good scores. This shows that A3C is quite robust to learning rates and initial random weights.

Hittp=frRLEx:

af://n84

12000 1.step ©, Bearnrider 00 Lstep Q, Breakout o 1etep Q, Pong 000 1step, Qrbert 00 Lstep 0, Space Invaders
350 . o
10000 a . 0 1 4000 &2 o0 -
1 i 300 F—4 1
ArPos | d g O bl 600
8000 - = 250 o : 10 - 3000 T
. . 1 s
. 4 500 4
H & g 200 v . @
5 6000 H HE) o 5 2000
& . 150 .] 7 “ 200
] L S e
4000 . 100 1 -10 . 1000
. . carm S 00
i s : L .
. -
2000 . 4 B -0 % AL 0
£ o ameee? 2, 200
e
o —s0 . —30 1000 - . 00 - .
10 10 10 10 10 10 10° 10 10 Bt 10 10 10 10 10
Learning rate Learning rate Leaning rate Learming rate Leaming rate
L1000 1:sten SARSA, Beamrider 00 1.step SARSA, Breakout o Lstep SARSA, Fong 000 1.step SARSA, Qrbert 00 1.step SARSA, Space invaders.
12000 . 350 1 = b 800
. ey, I 4 a000 Ea!
10000 C) 300 . EEE 10 o d 700 AHE v
' 250 7 5 = 3000 ¥
8000 L 1 b 600 2
o Tl 200 . o 0 - o akb o -
5 s000 . § H Jis 5 2000 = . . Ss00
& & 150 = & 5 . H &
4000 = - 7 s . ° 400
H L 10 10 A woa s,
S i ‘ .
2000 T © 4 s i 00
needd = o
¢ o i 0 pu - - 200 9
2000 -0 25 N 1000 w0,
10 10 10 10+ 0° 10 104 10° 1 104 10 10 0+ 10 10
Learning Learning rats Learning rats Learning Learning rats
16000 step Q, Beamrider 00 -step Q. Breakout 2 n-sten 0, Pang 5000 n-step Q, Qbert 1000 n-step @, Space Invaders
14000 U 350 4
Lo P TR 20 L L 2000 L.l t 990
L SR B 5
12000 - 300 - - % .
. . 15 Lobg 800
10000 - 250 10 -, 300 . .
o s000 s Lt o 200 - o o o 4 o 70 - sy 53
H g s g 0 . s s 2000 2 s 4
@ 5000 L Lt R @ b i & .. 3 g0
a000 T o 100 o 0. 1000 -
.. et : . e EEE 500
2000 o Nt . 50 =t i 9 Bl
st . 20 AL o
o o o L “00
-2000 | . s, 3 , - -1000 | , 300 s
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Learning rate Learing rate Learning rate Learning rate Learing rate

Figure S11. Scatter plots of scores obtained by one-step Q, one-step Sarsa, and n-step Q on five games (Beamrider,
Breakout, Pong, Q*bert, Space Invaders) for 50 different learning rates and random initializations. All algorithms exhibit
some level of robustness to the choice of learning rate.

o ARFPMBENEEIEFIFRECCETHREBERFIEIEAREL.

S

~

SEEREILAMA:

o WRIFHERATRRRRD

o FALINATRERE. RRIESSMEBUFEIEL
o HIEFIRERS, et

o AL ZEGEMEIZRIN R ERE

SEr
SEEZH
e Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
° EDE zigﬁﬂ
° % E"i&ﬁg

1E&: 8

By HIRTEXZE
HRAmE: HEEHE, BUES
BEABI: xyfcw@gg.com

af://n94
af://n106
https://arxiv.org/abs/1106.5730
https://zhuanlan.zhihu.com/p/310608740
https://zhuanlan.zhihu.com/p/136823256
mailto:xyfcw@qq.com

	Asynchronous Methods for Deep Reinforcement Learning（深度强化学习的异步方法）
	Asynchronous RL Framework（异步强化学习架构）
	Asynchronous one-step Q-learning（异步一步Q学习）
	Asynchronous one-step Sarsa（异步一步Sarsa）
	Asynchronous n-step Q-learning（异步n步Q学习）
	Asynchronous advantage actor-critic（A3C）

	实验
	Atari游戏
	TORCS Car Racing Simulator（TORCS赛车模拟器）
	Continuous Action Control Using the MuJoCo Physics Simulator（使用MuJoCo物理模拟器进行连续动作控制）
	Labyrinth（迷宫）
	Scalability and Data Efficiency（可扩展性和数据效率）
	Robustness and Stability（稳健性和稳定性）

	总结
	参考资料

