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Figure 5: This figure [5] is an illustration of Parameter
Server. Data is partitioned to workers. Each worker com-
putes a gradient and sends it to server for updating the
weight. The updated model is copied back to wokers
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Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 6, 0, and counter T’ = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 0~ « 0

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on ()(s, a; )
Receive new state s” and reward r

_ )T for terminal s’
L +ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 6: df < df + 8(3”_@5;’“-‘9))
!
§=s

T+ T+ Tlandt+ t+1

if 7' mod Iligrger == 0 then
Update the target network 6~ <+ 8

end if

if { mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of € using df.
Clear gradients df + 0.

end if

until 7" > Tz
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Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

H Assume global shared parameter vector 6.
/ Assume global shared target parameter vector 0~ .
H Assume global shared counter T' = 0.
Initialize thread step counter ¢ +— 1
Initialize target network parameters 6~ < @
Initialize thread-specific parameters 8’ = ¢
Initialize network gradients df + 0
repeat

Clear gradients df < 0

Synchronize thread-specific parameters 8" = 6

Lstart — €
Get state s;
repeat

Take action a: according to the e-greedy policy based on Q(st, a;6")
Receive reward r; and new state s¢1

t—t+1
T+T+1
until terminal s; or t — fstqrt == tmax
n_ 0 for terminal s;
T | max, Q(si,a;07) for non-terminal s,
foric {t—1,...,tear} do
R+~r,+~vR

)2
Accumulate gradients wrt 6': d + df + w

end for
Perform asynchronous update of ¢ using df.
if T mod Itarge: == 0 then
0~ ¢
end if
until 7 > Tan

o —SIENRRRE r RERMIMSErTEN Q(s, a) B, EftQERBERN, nSiAEEIMre
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Asynchronous advantage actor-critic (A3C)

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T' = ()
/ Assume thread-specific parameter vectors 0" and 0,
Initialize thread step counter ¢ + 1
repeat
Reset gradients: dff « 0 and df,, « 0.
Synchronize thread-specific parameters ' = 6 and 0, = 0,
t-stav‘f =1
Get state s;
repeat
Perform a; according to policy 7(a|s¢; 0")
Receive reward r; and new state s;41

t+—t+1
T+ T+1
until terminal 5; ort — f00rt == tinas
R— 0 for terminal s¢
T Vs, 00) for non-terminal s.// Bootstrap from last state
foriec {t —1,... tstart} do
R+ ri+ ’}R

Accumulate gradients wrt 8': dff « df + Vg log w(a;:|s::8") (R — V(s::6,,))
Accumulate gradients wrt 02 dfl, + df, + 0 (R — V(s::0.))* /00,
end for
Perform asynchronous update of ¢ using d@ and of €, using df,.
until 7' > Thas
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Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atari 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUniform(10~*, 1072) and all other hyperparameters fixed.
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DQN

Gorila

D-DQN
Dueling D-DOQN
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A3C, FF

A3C, FF
A3C,LSTM

8 days on GPU
4 days, 100 machines

8 days on GPU

8 days on GPU

8 days on GPU

1 day on CPU
4 days on CPU
4 days on CPU

121.9%
215.2%
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343.8%
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344.1%
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47.5%
71.3%
110.9%
117.1%
127.6%
68.2%
116.6%
112.6%

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary

Table SS3 shows the raw scores for all games.
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TORCS Car Racing Simulator (TORCSEZFISEHIEE)
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Figure S6. Comparison of algorithms on the TORCS car racing simulator. Four different configurations of car speed and
opponent presence or absence are shown. In each plot, all four algorithms (one-step Q, one-step Sarsa, n-step Q and
Advantage Actor-Critic) are compared on score vs training time in wall clock hours. Multi-step algorithms achieve better
policies much faster than one-step algorithms on all four levels. The curves show averages over the 5 best runs from 50
experiments with learning rates sampled from LogUni form(10™*,1072) and all other hyperparameters fixed.
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Figure S7. Performance for the Mujoco continuous action domains. Scatter plot of the best score obtained against
learning rates sampled from LogUmni form(10_5, 10_1). For nearly all of the tasks there is a wide range of learning

rates that lead to good performance on the task.

o EBARZEES EASCIEFIE (learning rate) ERSEEIZN FEMBRIFAIRIL.

Labyrinth (i¥E)

X2 3DEERER, B4 (episode) ERBENER—MEE, KEEGER], FaEFHEI—
MEREB1TD, BEINNE100. BEINNRERFSEMTISEIRSEEE— M, FEZRISEHEIRIE
REEWEM. —HHER60E, SREHII—ENTITEA.

XMNEREE LI —THERNRE, EAS—REEEHA—F, XGRS, BfFE)
HASCRRIULEEREARRIFAIRER.

Scalability and Data Efficiency (aJ# RRHFIEHEHER)
NI NS R R =57 N S I I PR

frAtariiprk EAEIREEAT)


af://n75
af://n78

Number of threads
Method 1 2 4 8 16
I-step Q 1.0] 30| 6.3 | 13.3 | 24.1
I-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 22.1
n-step Q 1.0 | 2.7 | 8.9 | 10.7 | 17.2
A3C 1.0 2.1 | 37| 69 12.5

Table 2. The average training speedup for each method and num-
ber of threads averaged over seven Atari games. To compute the
training speed-up on a single game we measured the time to re-
quired reach a fixed reference score using each method and num-
ber of threads. The speedup from using n threads on a game was
defined as the time required to reach a fixed reference score using
one thread divided the time required to reach the reference score
using n threads. The table shows the speedups averaged over
seven Atari games (Beamrider, Breakout, Enduro, Pong, Q*bert,
Seaquest, and Space Invaders).
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Figure 2. Scatter plots of scores obtained by asynchronous advantage actor-critic on five games (Beamrider, Breakout, Pong, Q*bert,
Space Invaders) for 50 different learning rates and random initializations. On each game, there is a wide range of learning rates for
which all random initializations acheive good scores. This shows that A3C is quite robust to learning rates and initial random weights.
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Figure S11. Scatter plots of scores obtained by one-step Q, one-step Sarsa, and n-step Q on five games (Beamrider,
Breakout, Pong, Q*bert, Space Invaders) for 50 different learning rates and random initializations. All algorithms exhibit
some level of robustness to the choice of learning rate.
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