#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-09 20:25:52 @LastEditor: John LastEditTime: 2021-09-16 00:55:30 @Discription: @Environment: python 3.7.7 ''' import numpy as np import torch import torch.nn as nn import torch.optim as optim from common.model import Actor, Critic from common.memory import ReplayBuffer class DDPG: def __init__(self, state_dim, action_dim, cfg): self.device = cfg.device self.critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device) self.actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device) self.target_critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device) self.target_actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device) # 复制参数到目标网络 for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_(param.data) for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_(param.data) self.critic_optimizer = optim.Adam( self.critic.parameters(), lr=cfg.critic_lr) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr) self.memory = ReplayBuffer(cfg.memory_capacity) self.batch_size = cfg.batch_size self.soft_tau = cfg.soft_tau # 软更新参数 self.gamma = cfg.gamma def choose_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) action = self.actor(state) return action.detach().cpu().numpy()[0, 0] def update(self): if len(self.memory) < self.batch_size: # 当 memory 中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state, action, reward, next_state, done = self.memory.sample(self.batch_size) # 转变为张量 state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) policy_loss = self.critic(state, self.actor(state)) policy_loss = -policy_loss.mean() next_action = self.target_actor(next_state) target_value = self.target_critic(next_state, next_action.detach()) expected_value = reward + (1.0 - done) * self.gamma * target_value expected_value = torch.clamp(expected_value, -np.inf, np.inf) value = self.critic(state, action) value_loss = nn.MSELoss()(value, expected_value.detach()) self.actor_optimizer.zero_grad() policy_loss.backward() self.actor_optimizer.step() self.critic_optimizer.zero_grad() value_loss.backward() self.critic_optimizer.step() # 软更新 for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau ) for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau ) def save(self,path): torch.save(self.actor.state_dict(), path+'checkpoint.pt') def load(self,path): self.actor.load_state_dict(torch.load(path+'checkpoint.pt'))