#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-21 11:07:57 LastEditor: JiangJi LastEditTime: 2021-04-21 11:15:00 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import gym import numpy as np import datetime from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class TD3Config: def __init__(self) -> None: self.algo = 'TD3' self.env = 'HalfCheetah-v2' self.seed = 0 self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models self.eval_freq = 5e3 # How often (time steps) we evaluate # self.train_eps = 800 self.max_timestep = 4000000 # Max time steps to run environment # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def eval(env_name,seed, eval_episodes=10): eval_env = gym.make(env_name) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # eval_env.render() action = eval_env.action_space.sample() state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") return avg_reward def train(cfg,env): # Evaluate untrained policy evaluations = [eval(cfg.env, cfg.seed)] state, done = env.reset(), False ep_reward = 0 ep_timesteps = 0 episode_num = 0 rewards = [] ma_rewards = [] # moveing average reward for t in range(int(cfg.max_timestep)): ep_timesteps += 1 # Select action randomly action = env.action_space.sample() # Perform action next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: # +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}") # Reset environment state, done = env.reset(), False rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) ep_reward = 0 ep_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % cfg.eval_freq == 0: evaluations.append(eval(cfg.env, cfg.seed)) return rewards, ma_rewards if __name__ == "__main__": cfg = TD3Config() env = gym.make(cfg.env) env.seed(cfg.seed) # Set seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) rewards,ma_rewards = train(cfg,env) make_dir(cfg.result_path) save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path) # cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/' # agent.load(cfg.result_path) # eval(cfg.env,agent, cfg.seed)