#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John @LastEditTime: 2020-07-20 23:02:16 @Discription: @Environment: python 3.7.7 ''' '''未完成 ''' import gym import torch from dqn import DQN from plot import plot import argparse def get_args(): '''模型建立好之后只需要在这里调参 ''' parser = argparse.ArgumentParser() parser.add_argument("--gamma", default=0.99, type=float) # q-learning中的gamma parser.add_argument("--epsilon_start", default=0.95, type=float) # 基于贪心选择action对应的参数epsilon parser.add_argument("--epsilon_end", default=0.01, type=float) parser.add_argument("--epsilon_decay", default=200, type=float) parser.add_argument("--policy_lr", default=0.01, type=float) parser.add_argument("--memory_capacity", default=1000, type=int, help="capacity of Replay Memory") parser.add_argument("--batch_size", default=32, type=int, help="batch size of memory sampling") parser.add_argument("--max_episodes", default=200, type=int) parser.add_argument("--max_steps", default=200, type=int) parser.add_argument("--target_update", default=2, type=int, help="when(every default 10 eisodes) to update target net ") config = parser.parse_args() return config if __name__ == "__main__": cfg = get_args() # if gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") env = gym.make('CartPole-v0').unwrapped env.seed(1) n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay,policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) rewards = [] moving_average_rewards = [] for i_episode in range(1, cfg.max_episodes+1): # Initialize the environment and state state = env.reset() ep_reward = 0 for t in range(1, cfg.max_steps+1): # Select and perform an action action = agent.select_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward # Store the transition in memory agent.memory.push(state,action,reward,next_state,done) # Move to the next state state = next_state # Perform one step of the optimization (on the target network) agent.update() if done: break # Update the target network, copying all weights and biases in DQN if i_episode % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print('Episode:', i_episode, ' Reward: %i' % int(ep_reward), 'Explore: %.2f' % agent.epsilon) rewards.append(ep_reward) # 计算滑动窗口的reward if i_episode == 1: moving_average_rewards.append(ep_reward) else: moving_average_rewards.append( 0.9*moving_average_rewards[-1]+0.1*ep_reward) import os import numpy as np output_path = os.path.dirname(__file__)+"/result/" if not os.path.exists(output_path): os.mkdir(output_path) np.save(output_path+"rewards.npy", rewards) np.save(output_path+"moving_average_rewards.npy", moving_average_rewards) print('Complete!') plot(rewards) plot(moving_average_rewards, ylabel="moving_average_rewards")