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Algorithm 1 PPO, Actor-Critic Style
for iteration=1,2,... do
for actor=1,2,...,N do
Run policy my,,, in environment for 7" timesteps
Compute advantage estimates Ay,..., Ap
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < N7T'
00](1 0
end for
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algorithm avg. normalized score
No clipping or penalty -0.39
Clipping, € = 0.1 0.76
Clipping, € = 0.2 0.82
Clipping, € = 0.3 0.70
Adaptive KL d;a, = 0.003 .68
Adaptive KL diae = 0.01 0.74
Adaptive KL diare = 0.03 0.71
Fixed KL, 3 = 0.3 0.62
Fixed KL, 5 = 1. 0.71
Fixed KL, 5 = 3. 0.72
Fixed KL, 5 = 10. 0.69
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Figure 3: Comparison ol several algorithms on several MuJoCo environments, training [or one million

timesteps.
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