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Main Idea (What):
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Theorem 3.1. With the reparameterizable policy defined above, using Stein’s identity, we can derive
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Proof. See Appendix for the detail proof. To help understand the intuition, we can consider the
Delta function as a Gaussian with a small variance h?, i.e. 7(als, £) oc exp(—|la — f(s,€)||3/2h?),
for which it is easy to show that

Vologm(a,&|s) = —Vofo(s,&) Valogm(a, | s). (7)

This allows us to convert between the derivative w.r.t. @ and w.r.t. €, and apply Stein’s identity. [

Stein Control Variate Using Eq (6) as a control variate, we obtain the following general formula
of policy gradient:
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where any fixed choice of ¢ does not introduce bias to the expectation. Given a sample set
(s4,a4,&)7— where a; = fo(s¢, &), an estimator of the gradient is
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Main Contribution (How):
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Algorithm 1 PPO with Control Variate through Stein’s Identity (the PPO procedure is adapted from
Algorithm 1 in Heess et al. 2017)
repeat

Run policy g for n timesteps, collecting {s¢, at, &, 7+ }, where &; is the random seed that generates action
at, i.e., ar = fo(st,&t). Set wo < mo.

// Updating the baseline function ¢

for K iterations do
Update w by one stochastic gradient descent step according to (14), or (15), or (27) for Gaussian
policies.

end for

// Updating the policy

for M iterations do
Update 6 by one stochastic gradient descent step with (20) (adapting it with (17) and (19) for Gaussian
policies).

end for

// Adjust the KL penalty coefficient \
if KL[W old |’/T 9] > ,BhighKLtarget then
A al
else if KL[mow|mg] < Biow KLiarger then
A+ Ao
end if
until Convergence
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Figure 1: The variance of gradient estimators of different control variates under a fixed policy obtained by
running vanilla PPO for 200 iterations in the Walker2d-v1 environment.
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Figure 2: Evaluation of TRPO with Q-prop and Stein control variates on Hopper-v1 and Walker2d-v1.

Humanoid-v1 HumanoidStandup-v1
Function MinVar FitQ MinVar FitQ
MLP 3847 +249.3 3334 £ 695.7 | 143314 + 9471 139315 + 10527
Quadratic | 2356 +294.7 3563 £235.1 | 117962 +5798 141692 + 3489
Linear 2547 £701.8 3404 £ 813.1 | 129393 = 18574 132112 £ 11450
Value 2207 £ 554 128765 + 13440

Table 1: Results of different control variates and methods for optimizing ¢, when combined with
PPO. The reported results are the average reward at the 10000k-th time step on Humanoid-v1 and
the 5000k-th time step on HumanoidStandup-v1.
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Figure 3: Evaluation of PPO with the value function baseline and Stein control variates across different Mujoco
environments: HumanoidStandup-v1, Humanoid-v1, Walker2d-v1, Ant-vl and Hopper-v1, HalfCheetah-v1.
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