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Motivation (Why):
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Main Idea (What):
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Main Contribution (How):
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Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function ¢ with random weights
for episode = 1, M do
Initialise sequence s; = {z } and preprocessed sequenced ¢, = ¢(s,)
fort =1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(d(s¢),a;6)
Execute action a; in emulator and observe reward r; and image ¢, 1
Set 8441 = 8¢, as, x¢41 and preprocess ¢ 1 = d(S¢41)
Store transition (¢, as, ¢, bre1) in D
Sample random minibatch of transitions (¢;, a;j, r;, ¢;+1) from D
Sety; = { T for terminal ?5;'+1
< r;i +ymaxy Q(¢jr1,a’;0) for non-terminal ¢; 1

Perform a gradient descent step on (y; — Q(¢;, a;: 0))* according to equation 3
end for
end for
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B. Rider | Breakout | Endure | Pong | Q¥*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 3638 —3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 300 1145
DQN Best 5184 225 661 21 4500 1740 1075
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